新編高三數(shù)學(xué)復(fù)習(xí) 第6篇 第2節(jié) 一元二次不等式及其解法
-
資源ID:61939026
資源大?。?span id="exgkpzj" class="font-tahoma">112.50KB
全文頁(yè)數(shù):5頁(yè)
- 資源格式: DOC
下載積分:10積分
快捷下載

會(huì)員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會(huì)被瀏覽器默認(rèn)打開,此種情況可以點(diǎn)擊瀏覽器菜單,保存網(wǎng)頁(yè)到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請(qǐng)使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無(wú)水印,預(yù)覽文檔經(jīng)過(guò)壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒(méi)有明確說(shuō)明有答案則都視為沒(méi)有答案,請(qǐng)知曉。
|
新編高三數(shù)學(xué)復(fù)習(xí) 第6篇 第2節(jié) 一元二次不等式及其解法
第六篇 第2節(jié)
一、選擇題
1.(20xx渭南模擬)函數(shù)y=的定義域?yàn)? )
A.(-∞,-4)∪(1,+∞) B.(-4,1)
C.(-4,0)∪(0,1) D.(-1,4)
解析:由-x2-3x+4>0得x2+3x-4<0,
解得-4<x<1,所以函數(shù)的定義域?yàn)?-4,1).故選B.
答案:B
2.(高考重慶卷)不等式≤0的解集為( )
A.
B.
C.∪[1,+∞)
D.∪[1,+∞)
解析:不等式≤0
?
?-<x≤1.
故選A.
答案:A
3.如果關(guān)于x的不等式5x2-a≤0的正整數(shù)解是1,2,3,4,那么實(shí)數(shù)a的取值范圍是( )
A.80≤a<125 B.80<a<125
C.a(chǎn)<80 D.a(chǎn)>125
解析:5x2-a≤0,得-≤x≤,
而正整數(shù)解是1,2,3,4,
則4≤<5,
∴80≤a<125.
故選A.
答案:A
4.(20xx沈陽(yáng)模擬)某商場(chǎng)若將進(jìn)貨單價(jià)為8元的商品按每件10元出售,每天可銷售100件,現(xiàn)準(zhǔn)備采用提高售價(jià)來(lái)增加利潤(rùn).已知這種商品每件銷售價(jià)提高1元,銷售量就要減少10件.那么要保證每天所賺的利潤(rùn)在320元以上,銷售價(jià)每件應(yīng)定為( )
A.12元
B.16元
C.12元到16元之間
D.10元到14元之間
解析:設(shè)銷售價(jià)定為每件x元,利潤(rùn)為y,則:
y=(x-8)[100-10(x-10)],
依題意有,(x-8)[100-10(x-10)]>320,
即x2-28x+192<0,
解得12<x<16,
所以每件銷售價(jià)應(yīng)為12元到16元之間.故選C.
答案:C
5.(20xx莆田二模)不等式(x2-2)log2x>0的解集是( )
A.(0,1)∪(,+∞)
B.(-,1)∪(,+∞)
C.(,+∞)
D.(-,)
解析:原不等式等價(jià)于或
∴x>或0<x<1,
即不等式的解集為(0,1)∪(,+∞).故選A.
答案:A
6.(20xx廈門模擬)若不等式ax2+bx+c>0的解集是(-4,1),則不等式b(x2-1)+a(x+3)+c>0的解集為( )
A.
B.(-∞,-1)∪
C.(-1,4)
D.(-∞,-2)∪(1,+∞)
解析:由題意知-4,1是方程ax2+bx+c=0的兩根,
∴
∴b=3a,c=-4a,
∴不等式ax2+bx+c>0可化為a(x2+3x-4)>0,
又其解集為(-4,1),
∴a<0,
∴不等式b(x2-1)+a(x+3)+c>0可化為:
a(3x2+x-4)>0,
∴3x2+x-4<0,
解得-<x<1.故選A.
答案:A
二、填空題
7.(20xx山東師大附中第三次模擬)不等式<0的解集是________________.
解析:原不等式等價(jià)為x(x-1)(x+2)<0,
解得x<-2或0<x<1,
即原不等式的解集為(-∞,-2)∪(0,1).
答案:(-∞,-2)∪(0,1)
8.若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1},則a的值為______.
解析:∵(1-a)x2-4x+6>0的解集是{x|-3<x<1},
∴1-a<0,即a>1.
于是原不等式可化為(a-1)x2+4x-6<0,a-1>0,
其解集為{x|-3<x<1}.
則方程(a-1)x2+4x-6=0的兩根為-3和1.
由解得a=3.
答案:3
9.已知y=f(x)是偶函數(shù),當(dāng)x>0時(shí),f(x)=(x-1)2;若當(dāng)x∈時(shí),n≤f(x)≤m恒成立,則m-n的最小值為________.
解析:當(dāng)x<0時(shí),-x>0,f(x)=f(-x)=(x+1)2,
∵x∈,
∴f(x)min=f(-1)=0,
f(x)max=f(-2)=1,
∴m≥1,n≤0,m-n≥1.
答案:1
10.(高考重慶卷)設(shè)0≤α≤π,不等式8x2-(8sin α)x+cos 2α≥0對(duì)x∈R恒成立,則α的取值范圍為________________.
解析:由題意知,(8sin α)2-4×8·cos 2α≤0,
∴2sin2α-cos 2α≤0,
∴2sin2α-(1-2sin2α)≤0,
∴4sin2α-1≤0,
∴sin2α≤,
又0≤α≤π,
∴0≤sin α≤.
∴0≤α≤或≤α≤π.
答案:∪
三、解答題
11.(20xx日照模擬)已知函數(shù)f(x)=的定義域?yàn)镽.
(1)求a的取值范圍;
(2)若函數(shù)f(x)的最小值為,解關(guān)于x的不等式x2-x-a2-a<0.
解:(1)∵函數(shù)f(x)=的定義域?yàn)镽,
∴ax2+2ax+1≥0恒成立,
當(dāng)a=0時(shí),1≥0恒成立.
當(dāng)a≠0時(shí),則有
∴0<a≤1,
綜上可知,a的取值范圍是[0,1].
(2)∵f(x)==,
∵a>0,
∴當(dāng)x=-1時(shí),f(x)min=,
由題意得,=,
∴a=,
∴不等式x2-x-a2-a<0可化為x2-x-<0.
解得-<x<,
所以不等式的解集為.
12.已知f(x)=x2-2ax+2,當(dāng)x∈[-1,+∞)時(shí),f(x)≥a恒成立,求a的取值范圍.
解:法一 f(x)=(x-a)2+2-a2,
此二次函數(shù)圖象的對(duì)稱軸為x=a,
①當(dāng)a∈(-∞,-1)時(shí),結(jié)合圖象知,f(x)在[-1,+∞)上單調(diào)遞增,f(x)min=f(-1)=2a+3,
要使f(x)≥a恒成立,只需f(x)min≥a,
即2a+3≥a,解得a≥-3.
又a<-1,∴-3≤a<-1.
②當(dāng)a∈[-1,+∞)時(shí),f(x)min=f(a)=2-a2,
由2-a2≥a,解得-2≤a≤1.
又a≥-1,∴-1≤a≤1.
綜上所述,所求a的取值范圍為-3≤a≤1.
法二 由已知得x2-2ax+2-a≥0在[-1,+∞)上恒成立,
令g(x)=x2-2ax+2-a,
即Δ=4a2-4(2-a)≤0,
或
解得-3≤a≤1.