歡迎來到裝配圖網(wǎng)! | 幫助中心 裝配圖網(wǎng)zhuangpeitu.com!
裝配圖網(wǎng)
ImageVerifierCode 換一換
首頁 裝配圖網(wǎng) > 資源分類 > DOC文檔下載  

人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)

  • 資源ID:62748753       資源大?。?span id="c75cmbh" class="font-tahoma">185.50KB        全文頁數(shù):10頁
  • 資源格式: DOC        下載積分:10積分
快捷下載 游客一鍵下載
會員登錄下載
微信登錄下載
三方登錄下載: 支付寶登錄   QQ登錄   微博登錄  
二維碼
微信掃一掃登錄
下載資源需要10積分
郵箱/手機:
溫馨提示:
用戶名和密碼都是您填寫的郵箱或者手機號,方便查詢和重復(fù)下載(系統(tǒng)自動生成)
支付方式: 微信支付   
驗證碼:   換一換

 
賬號:
密碼:
驗證碼:   換一換
  忘記密碼?
    
友情提示
2、PDF文件下載后,可能會被瀏覽器默認(rèn)打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預(yù)覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標(biāo)題沒有明確說明有答案則都視為沒有答案,請知曉。

人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié)

2019學(xué)年人教版高中數(shù)學(xué)選修精品資料 章末檢測(一) 時間:120分鐘 滿分:150分 一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的) 1.曲線y=xex-1在點(1,1) 處切線的斜率等于(  ) A.2e          B.e C.2 D.1 解析:由y=xex-1得y′=ex-1+xex-1,所以曲線在點(1,1)處切線的斜率k=y(tǒng)′|x=1=e1-1+1×e1-1=2.故選C. 答案:C 2.二次函數(shù)y=f(x)的圖象過原點且它的導(dǎo)函數(shù)y=f′(x)的圖象是如圖所示的一條直線,y=f(x)的圖象的頂點在(  ) A.第Ⅰ象限 B.第Ⅱ象限 C.第Ⅲ象限 D.第Ⅳ象限 解析:設(shè)f(x)=ax2+bx+c,∵二次函數(shù)y=f(x)的圖象過原點,∴c=0,∴f′(x)=2ax+b,由y=f′(x)的圖象可知,2a<0,b>0,∴a<0,b>0,∴->0,=->0,故選A. 答案:A 3.設(shè)函數(shù)f(x)=ax+3,若f′(1)=3,則a等于(  ) A.2 B.-2 C.3 D.-3 解析:∵f′(x)=li =li =a, ∴f′(1)=a=3. 答案:C 4.若f(x)=x2-2x-4ln x,則f(x)的單調(diào)遞增區(qū)間為(  ) A.(-1,0) B.(-1,0)∪(2,+∞) C.(2,+∞) D.(0,+∞) 解析:f′(x)=2x-2-==,由f′(x)>0得x>2. 答案:C 5.已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值為(  ) A.-37 B.-29 C.-5 D.-11 解析:由f′(x)=6x2-12x=6x(x-2)=0,解得x=0或x=2,又f(0)=m,f(2)=m-8, f(-2)=m-40,所以f(x)max=m=3,f(x)min=m-40=3-40=-37. 答案:A 6.已知f(x)=2cos2x+1,x∈(0,π),則f(x)的單調(diào)遞增區(qū)間是(  ) A. B. C. D. 解析:∵f(x)=2cos2x+1=2+cos 2x,x∈(0,π), ∴f′(x)=-2sin 2x. 令f′(x)>0,則sin 2x<0. 又x∈(0,π),∴0<2x<2π. ∴π<2x<2π,即<x<π. 答案:C 7.設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(  ) A.函數(shù)f(x)有極大值f(2)和極小值f(1) B.函數(shù)f(x)有極大值f(-2)和極小值f(1) C.函數(shù)f(x)有極大值f(2)和極小值f(-2) D.函數(shù)f(x)有極大值f(-2)和極小值f(2) 解析:由圖可知,當(dāng)x<-2時,f′(x)>0;當(dāng)-2<x<1時,f′(x)<0;當(dāng)1<x<2時,f′(x)<0;當(dāng)x>2時, f′(x)>0.由此可以得到函數(shù)在x=-2處取得極大值,在x=2處取得極小值,選D. 答案:D 8.由y=-x2與直線y=2x-3圍成的圖形的面積是(  ) A. B. C. D.9 解析:解得交點A(-3,-9),B(1,-1). 如圖,由y=-x2與直線y=2x-3圍成的圖形的面積 S=-3(-x2)dx--3(2x-3)dx =-x3-(x2-3x)=. 答案:B 9.下列函數(shù)中,x=0是其極值點的函數(shù)是(  ) A.f(x)=-x3 B.f(x)=-cos x C.f(x)=sin x-x D.f(x)= 解析:對于A,f′(x)=-3x2≤0恒成立,在R上單調(diào)遞減,沒有極值點;對于B,f′(x)=sin x,當(dāng)x∈(-π,0)時,f′(x)<0,當(dāng)x∈(0,π)時,f′(x)>0,故f(x)=-cos x在x=0的左側(cè)區(qū)間(-π,0)內(nèi)單調(diào)遞減,在其右側(cè)區(qū)間(0,π)內(nèi)單調(diào)遞增,所以x=0是f(x)的一個極小值點;對于C,f′(x)=cos x-1≤0恒成立,在R上單調(diào)遞減,沒有極值點;對于D,f(x)=在x=0沒有定義,所以x=0不可能成為極值點,綜上可知,答案選B. 答案:B 10.已知函數(shù)f(x)=asin x-bcos x在x=時取得極值,則函數(shù)y=f(-x)是(  ) A.偶函數(shù)且圖象關(guān)于點(π,0)對稱 B.偶函數(shù)且圖象關(guān)于點(,0)對稱 C.奇函數(shù)且圖象關(guān)于點(,0)對稱 D.奇函數(shù)且圖象關(guān)于點(π,0)對稱 解析:∵f(x)的圖象關(guān)于x=對稱,∴f(0)= f(),∴-b=a, ∴f(x)=asin x-bcos x=asin x+acos x=asin(x+), ∴f(-x)=asin(-x+)=asin(π-x)=asin x. 顯然f(-x)是奇函數(shù)且關(guān)于點(π,0)對稱,故選D. 答案:D 11.已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f′(x)在R上恒有f′(x)<1(x∈R),則不等式f(x)<x+1的解集為(  ) A.(1,+∞) B.(-∞,-1) C.(-1,1) D.(-∞,-1)∪(1,+∞) 解析:不等式f(x)<x+1可化為f(x)-x<1, 設(shè)g(x)=f(x)-x, 由題意g′(x)=f′(x)-1<0,g(1)=f(1)-1=1,故原不等式?g(x)<g(1),故x>1. 答案:A 12.函數(shù)f(x)=(1-cos x)sin x在[-π,π]的圖象大致為(  ) 解析:在[-π,π]上, ∵f(-x)=[1-cos(-x)]sin(-x)=(1-cos x) (-sin x)=-(1-cos x)sin x=-f(x), ∴f(x)是奇函數(shù),∴f(x)的圖象關(guān)于原點對稱,排除B. 取x=,則f()=(1-cos)sin=1>0,排除A. ∵f(x)=(1-cos x)sin x,∴f′(x)=sin x·sin x+(1-cos x)cos x =1-cos2x+cos x-cos2x=-2cos2x+cos x+1. 令f′(x)=0,則cos x=1或cos x=-. 結(jié)合x∈[-π,π],求得f(x)在(0,π]上的極大值點為π,靠近π,選C. 答案:C 二、填空題(本大題共4小題,每小題4分,共16分,把答案填在題中的橫線上) 13.設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x+ex,則f′(1)=________. 解析:令ex=t,則x=ln t,所以f(x)=ln x+x,即 f′(x)=1+,則f′(1)=1+1=2. 答案:2 14.曲線y=e-5x+2在點(0,3)處的切線方程為________. 解析:因為y=e-5x+2,所以y′=-5e-5x,所求切線的斜率為k=y(tǒng)′|x=0=-5e0=-5,故所求切線的方程為y-3=-5(x-0),即y=-5x+3或5x+y-3=0. 答案:y=-5x+3或5x+y-3=0 15.若函數(shù)f(x)=在區(qū)間(m,2m+1)上單調(diào)遞增,則實數(shù)m的取值范圍是________. 解析:f′(x)=,令f′(x)> 0,得-1<x<1,即函數(shù)f(x)的增區(qū)間為(-1,1). 又f(x)在(m,2m+1)上單調(diào)遞增,所以解得-1<m≤0. 答案:(-1,0] 16.周長為20 cm的矩形,繞一條邊旋轉(zhuǎn)成一個圓柱,則圓柱體積的最大值為_______. 解析:設(shè)矩形的長為x,則寬為10-x(0<x<10),由題意可知所求圓柱的體積 V=πx2(10-x)=10πx2-πx3,∴V′(x)=20πx-3πx2. 由V′(x)=0得x=0(舍去),x=,且當(dāng)x∈(0,)時,V′(x)>0,當(dāng)x∈(,10)時,V′(x)<0, ∴當(dāng)x=時,V(x)取得最大值為π cm3. 答案:π cm3 三、解答題(本大題共有6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟) 17.(本小題滿分12分)求曲線y=x3在點(3,27)處的切線與兩坐標(biāo)軸所圍成的三角形的面積. 解析:因為f′(3)=li =27,所以在點(3,27)處的切線方程為y-27=27(x-3),即y=27x-54. 此切線與x軸、y軸的交點分別為(2,0),(0,-54). 所以切線與兩坐標(biāo)軸圍成的三角形的面積為×2×54=54. 18.(本小題滿分12分)已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4. (1)求a,b的值; (2)討論f(x)的單調(diào)性,并求f(x)的極大值. 解析:(1)f′ (x)=ex(ax+a+b)-2x-4. 由已知得f(0)=4,f′(0)=4.故b=4,a+b=8. 從而a=4,b=4. (2)由(1)知,f(x)=4ex(x+1)-x2-4x,f′(x)=4ex(x+2)-2x-4=4(x+2)(ex-). 令f′(x)=0,得x=-ln 2或x=-2. 從而當(dāng)x∈(-∞,-2)∪(-ln 2,+∞)時,f′(x)>0;當(dāng)x∈(-2,-ln 2)時,f′(x)<0. 故f(x)在(-∞,-2),(-ln 2,+∞)上單調(diào)遞增,在(-2,-ln 2)上單調(diào)遞減. 當(dāng)x=-2時,函數(shù)f(x)取得極大值,極大值為f(-2)=4(1-e-2). 19. (本小題滿分12分)已知函數(shù)f(x)=-x3+ax2+bx在區(qū)間(-2,1)內(nèi)x=-1時取極小值,x=時取極大值. (1)求函數(shù)y=f(x)在x=-2時的對應(yīng)點的切線方程; (2)求函數(shù)y=f(x)在[-2,1]上的最大值與最小值. 解析:(1)f′(x)=-3x2+2ax+b. 又x=-1,x=分別對應(yīng)函數(shù)取得極小值、極大值, 所以-1,為方程-3x2+2ax+b=0的兩個根. 所以a=-1+,-=(-1)×. 于是a=-,b=2,則f(x)=-x3-x2+2x. 當(dāng)x=-2時,f(-2)=2,即(-2,2)在曲線上. 又切線斜率為k=f′(-2)=-8,所求切線方程為y-2=-8(x+2), 即為8x+y+14=0. (2)當(dāng)x變化時,f′(x)及f(x)的變化情況如下表: x -2 (-2,-1) -1 (-1,) (,1) 1 f′(x) - 0 + 0 - f(x) 2  -   則f(x)在[-2,1]上的最大值為2,最小值為-. 20.(本小題滿分12分)已知二次函數(shù)f(x)=3x2-3x,直線l1:x=2和l2:y=3tx(其中t為常數(shù),且0<t<1),直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象所圍成的封閉圖形如圖所示,設(shè)這兩個陰影區(qū)域的面積之和為S(t). (1)求函數(shù)S(t)的解析式; (2)定義函數(shù)h(x)=S(x),x∈R.若過點A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實數(shù)m的取值范圍. 解析:(1)由得x2-(t+1)x=0, 所以x1=0,x2=t+1. 所以直線l2與f(x)的圖象的交點的橫坐標(biāo)分別為0,t+1. 因為0<t<1,所以1<t+1<2. 所以S(t)=[3tx-(3x2-3x)]dx+[(3x2-3x)-3tx]dx =+ =(t+1)3-6t+2. (2)依據(jù)定義,h(x)=(x+1)3-6x+2,x∈R,則 h′(x)=3(x+1)2-6. 因為m≠4,則點A(1,m)不在曲線y=h(x)上. 過點A作曲線y=h(x)的切線,設(shè)切點為M(x0,y0), 則切線方程為:y-y0=[3(x0+1)2-6](x-x0), 所以 消去y0,化簡整理得2x-6x0+m=0,其有三個不等實根. 設(shè)g(x0)=2x-6x0+m,則g′(x0)=6x-6. 由g′(x0)>0,得x0>1或x0<-1; 由g′(x0)<0,得-1<x0<1, 所以g(x0)在區(qū)間(-∞,-1),(1,+∞)上單調(diào)遞增,在(-1,1)上單調(diào)遞減, 所以當(dāng)x0=-1時,函數(shù)g(x0)取極大值; 當(dāng)x0=1時,函數(shù)g(x0)取極小值. 因此,關(guān)于x0的方程2x-6x0+m=0有三個不等實根的充要條件是 即即-4<m<4. 故實數(shù)m的取值范圍是(-4,4). 21.(本小題滿分13分)(2014·高考北京卷)已知函數(shù)f(x)=xcos x-sin x,x∈[0,]. (1)求證:f(x)≤0; (2)若a<<b對x∈(0,)恒成立,求a的最大值與b的最小值. 證明:(1)由f(x)=xcos x-sin x得 f′(x)=cos x-xsin x-cos x=-xsin x. 因為在區(qū)間(0,)上f′(x)=-xsin x<0,所以f(x)在區(qū)間[0,]上單調(diào)遞減. 從而f(x)≤f(0)=0. (2)當(dāng)x>0時,“>a”等價于“sin x-ax>0”;“<b”等價于“sin x-bx<0”. 令g(x)=sin x-cx,則g′(x)=cos x-c. 當(dāng)c≤0時,g(x)>0對任意x∈(0,)恒成立. 當(dāng)c≥1時,因為對任意x∈(0,),g′(x)=cos x-c<0,所以g(x)在區(qū)間[0,]上單調(diào)遞減.從而對 g(x)<g(0)=0對任意x∈(0,)恒成立. 當(dāng)0<c<1時,存在唯一的x0∈(0,)使得g′(x0)=cos x0-c=0. g(x)與g′(x)在區(qū)間(0,)上的情況如下: x (0,x0) x0 (x0,) g′(x) + 0 - g(x)   因為g(x)在區(qū)間[0,x0]上是增函數(shù),所以g(x0)>g(0)=0.進(jìn)一步,“g(x)>0對任意x∈(0,)恒成立”當(dāng)且僅當(dāng)g()=1-c≥0,即0<c≤. 綜上所述,當(dāng)且僅當(dāng)c≤時,g(x)>0對任意x∈(0,)恒成立;當(dāng)且僅當(dāng)c≥1時,g(x)<0對任意x∈(0,)恒成立. 所以,若a<<b對任意x∈(0,)恒成立,則a的最大值為,b的最小值為1. 22.(本小題滿分13分)(2014·高考北京卷)已知函數(shù)f(x)=2x3-3x. (1)求f(x)在區(qū)間[-2,1]上的最大值; (2)若過點P(1,t)存在3條直線與曲線y=f(x)相切,求t的取值范圍; (3)問過點A(-1,2),B(2,10),C(0,2)分別存在幾條直線與曲線y=f(x)相切?(只需寫出結(jié)論) 解析:(1)由f(x)=2x3-3x得f′(x)=6x2-3. 令f′(x)=0,得x=-或x=. 因為f(-2)=-10,f=,f=-, f(1)=-1, 所以f(x)在區(qū)間[-2,1]上的最大值為 f=. (2)設(shè)過點P(1,t)的直線與曲線y=f(x)相切于點(x0,y0), 則y0=2x-3x0,且切線斜率為k=6x-3, 所以切線方程為y-y0=(6x-3)(x-x0), 因此t-y0=(6x-3)(1-x0),整理得4x-6x+t+3=0. 設(shè)g(x)=4x3-6x2+t+3, 則“過點P(1,t)存在3條直線與曲線y=f(x)相切”等價于“g(x)有3個不同零點”. g′(x)=12x2-12x=12x(x-1). g(x)與g′(x)的情況如下: x (-∞,0) 0 (0,1) 1 (1,+∞) g′(x) + 0 - 0 + g(x) ↗ t+3 ↘ t+1 ↗ 所以,g(0)=t+3是g(x)的極大值,g(1)=t+1是 g(x)的極小值. 當(dāng)g(0)=t+3≤0,即t≤-3時,此時g(x)在區(qū)間 (-∞,1]和(1,+∞)上分別至多有1個零點,所以g(x)至多有2個零點. 當(dāng)g(1)=t+1≥0,即t≥-1時,此時g(x)在區(qū)間 (-∞,0)和[0,+∞)上分別至多1個零點,所以g(x)至多有2個零點. 當(dāng)g(0)>0且g(1)<0,即-3<t<-1時,因為g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分別在區(qū)間[-1,0),[0,1)和[1,2)上恰有1個零點.由于g(x)在區(qū)間(-∞,0)和(1,+∞)上單調(diào),所以g(x)分別在區(qū)間(-∞,0)和[1,+∞)上恰有1個零點. 綜上可知,當(dāng)過點P(1,t)存在3條直線與曲線y= f(x)相切時,t的取值范圍是(-3,-1). (3)過點A(-1,2)存在3條直線與曲線y=f(x)相切; 過點B(2,10)存在2條直線與曲線y=f(x)相切; 過點C(0,2)存在1條直線與曲線y=f(x)相切.

注意事項

本文(人教版 高中數(shù)學(xué) 選修22優(yōu)化練習(xí):第一章 章末優(yōu)化總結(jié))為本站會員(仙***)主動上傳,裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。 若此文所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng)(點擊聯(lián)系客服),我們立即給予刪除!

溫馨提示:如果因為網(wǎng)速或其他原因下載失敗請重新下載,重復(fù)下載不扣分。




關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  sobing.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!