新編高三數(shù)學 第36練 等差數(shù)列練習
-
資源ID:64169179
資源大?。?span id="5nujoqh" class="font-tahoma">60.50KB
全文頁數(shù):5頁
- 資源格式: DOC
下載積分:10積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網(wǎng)頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經(jīng)過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
新編高三數(shù)學 第36練 等差數(shù)列練習
第36練 等差數(shù)列
訓練目標
(1)等差數(shù)列的概念;(2)等差數(shù)列的通項公式和前n項和公式;(3)等差數(shù)列的性質.
訓練題型
(1)等差數(shù)列基本量的運算;(2)等差數(shù)列性質的應用;(3)等差數(shù)列的前n項和及其最值.
解題策略
(1)等差數(shù)列中的五個基本量知三求二;(2)等差數(shù)列{an}中,若m+n=p+q,則am+an=ap+aq;(3)等差數(shù)列前n項和Sn的最值求法:找正負轉折項或根據(jù)二次函數(shù)的性質.
一、選擇題
1.(20xx·遵義聯(lián)考一)已知數(shù)列{an}是公差為d的等差數(shù)列,a2=2,a1·a2·a3=6,則d等于( )
A.1 B.-1
C.±1 D.2
2.(20xx·遼寧師大附中期中)在等差數(shù)列{an}中,若a4+a6+a8+a10+a12=120,則2a10-a12的值為( )
A.20 B.22
C.24 D.28
3.(20xx·遼寧沈陽二中期中)已知Sn是等差數(shù)列{an}的前n項和,若a7=9a3,則等于( )
A.9 B.5
C. D.
4.已知{an}滿足a1=a2=1,-=1,則a6-a5的值為( )
A.48 B.96
C.120 D.130
5.(20xx·東營期中)設等差數(shù)列{an}的前n項和為Sn,若a1=-11,a4+a6=-6,則當Sn取最小值時,n等于( )
A.6 B.7
C.8 D.9
6.(20xx·邯鄲月考)等差數(shù)列{an}的前n項和記為Sn,三個不同的點A,B,C在直線l上,點O在直線l外,且滿足=a2+(a7+a12),那么S13的值為( )
A. B.
C. D.
7.(20xx·四川眉山中學期中改編)在等差數(shù)列{an}中,a1=-2 015,其前n項和為Sn,若-=2,則S2 017的值等于( )
A.2 016 B.-2 016
C.2 017 D.-2 017
8.(20xx·云南玉溪一中月考)已知函數(shù)f(x)=把函數(shù)g(x)=f(x)-x+1的零點按從小到大的順序排列成一個數(shù)列,該數(shù)列的前n項的和為Sn,則S10等于( )
A.45 B.55
C.210-1 D.29-1
二、填空題
9.(20xx·鐵嶺模擬)已知數(shù)列{an}的前n項和Sn=n2-6n,則{|an|}的前n項和Tn=________________.
10.(20xx·安慶一模)設Sn是等差數(shù)列{an}的前n項和,若=,則=________.
11.(20xx·山東臨沂一中期中)設f(x)=,利用課本中推導等差數(shù)列前n項和公式的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值是________.
12.在圓x2+y2=5x內(nèi),過點有n條弦的長度成等差數(shù)列,最短弦長為數(shù)列的首項a1,最長弦長為an,若公差d∈,那么n的取值集合為________.
答案精析
1. C [因為{an}是公差為d的等差數(shù)列,由a1·a2·a3=6,得(a2-d)·a2·(a2+d)=6,
則2(2-d)(2+d)=6,解得d=±1,故選C.]
2. C [由a4+a6+a8+a10+a12=(a4+a12)+(a6+a10)+a8=5a8=120,
解得a8=24,且a8+a12=2a10,則2a10-a12=a8=24.故選C.]
3.A [∵等差數(shù)列{an}中,a7=9a3.
∴a1+6d=9(a1+2d),∴a1=-d,
∴==9,故選A.]
4.B [由-=1可知是等差數(shù)列,公差為1,首項為=1,∴=n,累乘得an=(n-1)(n-2)×…×3×2×1(n≥2),∴a6-a5=120-24=96.]
5.A [設該數(shù)列的公差為d,則a4+a6=2a1+8d=2×(-11)+8d=-6,解得d=2,所以Sn=-11n+×2=n2-12n=(n-6)2-36,所以當n=6時,Sn取最小值.故選A.]
6.D [由三個不同的點A,B,C在直線l上,點O在直線l外,且滿足=a2+(a7+a12),得a2+a7+a12=1.因為{an}為等差數(shù)列,所以由等差中項公式,得3a7=1,a7=,所以S13=13a7=.故選D.]
7.C [設等差數(shù)列前n項和為Sn=An2+Bn,則=An+B,∴成等差數(shù)列.
∵==-2 015,
∴是以-2 015為首項,以1為公差的等差數(shù)列.
∴=-2 015+2 016×1=1,
∴S2 017=2 017.故選C.]
8.A [當x≤0時,g(x)=f(x)-x+1=x,故a1=0;
當0<x≤1時,有-1<x-1≤0,
則f(x)=f(x-1)+1=2(x-1)-1+1=2x-2,
g(x)=f(x)-x+1=x-1,故a2=1;
當1<x≤2時,有0<x-1≤1,
則f(x)=f(x-1)+1=2(x-1)-2+1=2x-3,
g(x)=f(x)-x+1=x-2,故a3=2;
當2<x≤3時,有1<x-1≤2,
則f(x)=f(x-1)+1=2(x-1)-3+1=2x-4,
g(x)=f(x)-x+1=x-3,故a4=3,…,以此類推,
當n<x≤n+1(其中n∈N)時,則f(x)=2x-(n+2),
故數(shù)列的前n項構成一個以0為首項,以1為公差的等差數(shù)列.
故S10==45,故選A.]
9.
解析 由Sn=n2-6n,得{an}是等差數(shù)列,且首項為-5,公差為2,
∴an=-5+(n-1)×2=2n-7,
∴當n≤3時,an<0;
當n≥4時,an>0,
∴Tn=
10.
解析 設S3=m,∵=,
∴S6=3m,∴S6-S3=2m,
由等差數(shù)列依次每k項之和仍為等差數(shù)列,得S3=m,S6-S3=2m,S9-S6=3m,S12-S9=4m,∴S6=3m,S12=10m,∴=.
11.3
解析 ∵f(x)=,∴f(x)+f(1-x)=+=,
∴由倒序相加求和法可知f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)=3.
12.{4,5,6}
解析 由已知2+y2=,
圓心為,半徑為,得
a1=2×=2×2=4,
an=2×=5,
由an=a1+(n-1)d?n=+1=+1=+1,
又<d≤,
所以4≤n<7,
則n的取值集合為{4,5,6}.