熱點(diǎn)探究訓(xùn)練(二)1.設(shè)函數(shù)f(x)=(a∈R).(1)若f(x)在x=0處取得極值,確定a的值,并求此時(shí)曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)若f(x)在[3,+∞)上為減函數(shù),求a的取值范圍. 【導(dǎo)學(xué)號:62172116】[解] (1)對f(x)求導(dǎo)得f′(x)==. 3分因?yàn)閒(x)在x=0處取得極值,所以f′(0)=0,即a=0.當(dāng)a=0時(shí),f(x)=,f′(x)=,故f(1)=,f′(1)=,從而f(x)在點(diǎn)(1,f(1))處的切線方程為y-=(x-1),化簡得3x-ey=0. 7分(2)由(1)知f′(x)=,令g(x)=-3x2+(6-a)x+a,由g(x)=0解得x1=,x2=. 9分當(dāng)x0,即f′(x)>0,故f(x)為增函數(shù);當(dāng)x>x2時(shí),g(x)<0,即f′(x)<0,故f(x)為減函數(shù).11分由f(x)在[3,+∞)上為減函數(shù),知x2=≤3,解得a≥-.故a的取值范圍為. 14分2.(2017·蘇州模擬)設(shè)函數(shù)f(x)=-k(k為常數(shù),e=2.718 28…是自然對數(shù)的底數(shù)).(1)當(dāng)k≤0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;(2)若函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),求k的取值范圍.[解] (1)函數(shù)y=f(x)的定義域?yàn)?0,+∞).f′(x)=-k=-=.由k≤0可得ex-kx>0,所以當(dāng)x∈(0,2)時(shí),f′(x)<0,函數(shù)y=f(x)單調(diào)遞減,當(dāng)x∈(2,+∞)時(shí),f′(x)>0,函數(shù)y=f(x)單調(diào)遞增.所以f(x)的單調(diào)遞減區(qū)間為(0,2),單調(diào)遞增區(qū)間為(2,+∞). 6分(2)由(1)知,k≤0時(shí),函數(shù)f(x)在(0,2)內(nèi)單調(diào)遞減,故f(x)在(0,2)內(nèi)不存在極值點(diǎn);當(dāng)k>0時(shí),設(shè)函數(shù)g(x)=ex-kx,x∈[0,+∞).因?yàn)間′(x)=ex-k=ex-eln k,當(dāng)00,y=g(x)單調(diào)遞增,故f(x)在(0,2)內(nèi)不存在兩個(gè)極值點(diǎn);當(dāng)k>1時(shí),得x∈(0,ln k)時(shí),g′(x)<0,函數(shù)y=g(x)單調(diào)遞減,x∈(ln k,+∞)時(shí),g′(x)>0,函數(shù)y=g(x)單調(diào)遞增.所以函數(shù)y=g(x)的最小值為g(ln k)=k(1-ln k).函數(shù)f(x)在(0,2)內(nèi)存在兩個(gè)極值點(diǎn),當(dāng)且僅當(dāng)解得e0).當(dāng)a>0時(shí),f(x)的單調(diào)增區(qū)間為(0,1],減區(qū)間為[1,+∞);當(dāng)a<0時(shí),f(x)的單調(diào)增區(qū)間為[1,+∞),減區(qū)間為(0,1];當(dāng)a=0時(shí),f(x)不是單調(diào)函數(shù). 4分(2)由f′(2)=-=1得a=-2,∴f′(x)=.∴g(x)=x3+x2-2x,∴g′(x)=3x2+(m+4)x-2.∵g(x)在區(qū)間(t,3)上總不是單調(diào)函數(shù),且g′(0)=-2,∴由題意知:對于任意的t∈[1,2],g′(t)<0恒成立,所以有:∴-f(1),即-ln x+x-1>0,∴l(xiāng)n x