《2022年高二數(shù)學(xué)上學(xué)期期中聯(lián)考試題 文(III)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高二數(shù)學(xué)上學(xué)期期中聯(lián)考試題 文(III)(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高二數(shù)學(xué)上學(xué)期期中聯(lián)考試題 文(III)
一.選擇題:本題12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,有且只有一項(xiàng)符合題目要求,將正確答案填涂在答題卡上。
1、設(shè),那么“”是“"的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
2、若向量a=(x-1,2),b=(4,y)相互垂直,則9x+3y的最小值為( )
A.4 B.6 C.9 D.12
3、在等差數(shù)
2、列中,若,則的值為( )
A.20 B.22 C.24 D.28
4、已知為等差數(shù)列,且則公差( )
A.-2 B. C. D.2
5、已知數(shù)列-1, ,,-4成等差數(shù)列,-1,b1,b2,b3,-4成等比數(shù)列,則的值為( )
A. B. - C.或- D.
6、等比數(shù)列中,,,則數(shù)列的前項(xiàng)和等于( )
A. B. C.
3、 D.
7、設(shè)為等比數(shù)列{}的前n項(xiàng)和,=0,則=( ).
?A.10 B.-5 C.9 D.-8
8、已知雙曲線的虛軸長(zhǎng)是實(shí)軸長(zhǎng)的2倍,則實(shí)數(shù)的值是( )
A. B. C. D.
9、已知橢圓的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且軸,直線AB交y軸于點(diǎn)P,若,則橢圓的離心率是( )
A. B. C. D.
10、已知拋物
4、線關(guān)于x軸對(duì)稱(chēng),它的頂點(diǎn)在坐標(biāo)原點(diǎn)O,并且經(jīng)過(guò)點(diǎn)M(2,y0).若點(diǎn)M到該拋物線焦點(diǎn)的距離為3,則|OM|=( )
A. B. C.4 D.
11、若不等式的解集是,則以下結(jié)論中:①;②;
③;④;⑤,正確是 ( )
A. ①②⑤ B.①③⑤ C. ②③⑤ D. ③④⑤
12、若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動(dòng)時(shí),使|MF|+|MA|取得最小值的M點(diǎn)的坐標(biāo)為( )
A.(0,0)
5、 B. C. D.(2,2)
第Ⅱ卷 非選擇題(共90分)
二.填空題:本題4小題,每小題5分,共20分,將答案填在答題卡上相應(yīng)位置。
13、實(shí)數(shù),則目標(biāo)函數(shù)的最小值是_______.
14、數(shù)列是等比數(shù)列,若,,則_______.
15、已知點(diǎn)是圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),設(shè),則點(diǎn)的軌跡方程______________;
16、下列關(guān)于圓錐曲線的命題:其中真命題的序號(hào)___________.(寫(xiě)出所有真命題的序號(hào))。
① 設(shè)為兩個(gè)定點(diǎn),若,則動(dòng)點(diǎn)的軌跡為雙曲線;
② 設(shè)為兩個(gè)定點(diǎn),若動(dòng)點(diǎn)滿足,且,則的最大值為8;
6、
③ 方程的兩根可分別作橢圓和雙曲線的離心率;
④ 雙曲線與橢圓有相同的焦點(diǎn)
三.解答題:本題6小題,共70分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟
17、已知關(guān)于的不等式的解集為.
(1)求實(shí)數(shù)的值;
(2)解關(guān)于的不等式:(為常數(shù)).
18、已知,不等式的解集是,
(1)求的解析式;
(2)若對(duì)于任意,不等式恒成立,求的取值范圍.
19、正項(xiàng)數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.
20、已知為等比數(shù)列,其中,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
21、設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點(diǎn)
7、,過(guò)的直線與E相交于A、B兩點(diǎn),且,,成等差數(shù)列。
(1)求的周長(zhǎng)
(2)求的長(zhǎng)
(3)若直線的斜率為1,求b的值。
22、已知橢圓E:的焦點(diǎn)坐標(biāo)為(),點(diǎn)M(,)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)Q(1,0),過(guò)Q點(diǎn)引直線與橢圓E交于兩點(diǎn),求線段中點(diǎn)的軌跡方程
文科參考答案及解析
選擇題:
1、A 2、B 3、C 4、B 5、A 6、D 7、A 8、A 9、D 10、B 11、C 12、D
填空題:13、-4 14、 15、 16、②③
解答題:
17、【解析】(1)由題知為關(guān)于的
8、方程的兩根,
即 ∴.
(2)不等式等價(jià)于,
所以:當(dāng)時(shí)解集為;當(dāng)時(shí)解集為;
當(dāng)時(shí)解集為.
18、【解析】(1),不等式的解集是,
所以的解集是,所以和是方程的兩個(gè)根,
由韋達(dá)定理知,.
(2)恒成立等價(jià)于恒成立,
所以的最大值小于或等于0.設(shè),
則由二次函數(shù)的圖象可知在區(qū)間為減函數(shù),
所以,所以.
19、【解析】(1)
(2)
20【解析】
(Ⅰ)∵,由通項(xiàng)公式,得出;
∴公比
∵,且,∴數(shù)列的通項(xiàng)公式為?
(Ⅱ)∵,∴.
∵,
∴,
∴??
21、【解析】(1)由橢圓定義知
已知a=1∴的周長(zhǎng)是4
(2)由已知 ,,成等差數(shù)列
∴ ??,
又
故3|AB |=4,解得 |AB|=4/3
(3)L的方程式為y=x+c,其中?
設(shè),則A,B 兩點(diǎn)坐標(biāo)滿足方程組?,
化簡(jiǎn)得
則?
因?yàn)橹本€AB的斜率為1,所以?
即???.
則?
解得?
22、【解析】(Ⅰ)∵橢圓E: (a,b>0)經(jīng)過(guò)M(-2,) ,一個(gè)焦點(diǎn)坐標(biāo)為(),
∴?,橢圓E的方程為;
(Ⅱ)當(dāng)直線的斜率存在時(shí),設(shè)直線與橢圓E的兩個(gè)交點(diǎn)為A(),B(),相交所得弦的中點(diǎn),∴?,
①-②得,,
∴弦的斜率,
∵四點(diǎn)共線,∴,即,
經(jīng)檢驗(yàn)(0,0),(1,0)符合條件,
∴線段中點(diǎn)的軌跡方程是.