《2022年高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 第41課 數(shù)列的遞推關(guān)系與求和自主學(xué)習(xí)》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 第41課 數(shù)列的遞推關(guān)系與求和自主學(xué)習(xí)(2頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 第41課 數(shù)列的遞推關(guān)系與求和自主學(xué)習(xí)
1. 遞推數(shù)列
(1) 概念:數(shù)列的連續(xù)若干項(xiàng)滿足的等量關(guān)系an+k=f(an+k-1,an+k-2,…,an)稱為數(shù)列的遞推關(guān)系.由遞推關(guān)系及k個初始值確定的數(shù)列叫遞推數(shù)列.
(2) 求遞推數(shù)列通項(xiàng)公式的常用方法:迭代法、構(gòu)造法、累加(乘)法、歸納猜想法.
2. 常用的一般數(shù)列的求和方法
(1) 公式法:若可以判斷出所求數(shù)列是等差(等比)數(shù)列,則可以直接利用公式進(jìn)行求和.若數(shù)列不是等差數(shù)列,也不是等比數(shù)列,有時(shí)可直接運(yùn)用常見的基本求和公式進(jìn)行求和.
(2) 分組轉(zhuǎn)化法:把數(shù)列的每一項(xiàng)拆成兩項(xiàng)的差
2、(或和),或把數(shù)列的項(xiàng)重新組合,使其轉(zhuǎn)化為等差或等比數(shù)列.
(3) 裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)的差(或和),使求和時(shí)出現(xiàn)的一些正負(fù)項(xiàng)相互抵消,于是前n項(xiàng)和變成首尾兩項(xiàng)或少數(shù)幾項(xiàng)和(差).
(4) 倒序相加法:把Sn中項(xiàng)的順序首尾顛倒過來,再與原來順序的Sn相加.這種方法體現(xiàn)了“補(bǔ)”的思想,等差數(shù)列的前n項(xiàng)和公式就是用它推導(dǎo)出來的.事實(shí)上,如果一個數(shù)列倒過來與原數(shù)列相加時(shí),若有公因式可提,并且剩余的項(xiàng)和可求出來,那么這樣的數(shù)列就可以用倒序相加法求和.
(5) 錯位相減法:數(shù)列{anbn}的求和問題應(yīng)用此法,其中{an}是等差數(shù)列,{bn}是等比數(shù)列.
1. (必修5P55練
3、習(xí)4改編)求和:= .
[答案]2 101
[解析]1+2+…+10=55,2+22+…+210=2 046.
2. (必修5P68復(fù)習(xí)題13(1)改編)數(shù)列 的前n項(xiàng)和Sn= .
[答案]
[解析]=-,Sn=1-=.
3. (必修5P41習(xí)題13改編)已知數(shù)列{an}滿足:a1=1,an=n+an-1(n≥2,n∈N*),則數(shù)列{an}的通項(xiàng)公式為 .?
[答案]an=
[解析]an=n+an-1可變形為an-an-1=n(n≥2,n∈N*),由此可寫出以下各式:an-an-1=n,an-1-an-2=n-1,an-2-an-3=n-2,…,a2
4、-a1=2,將以上等式兩邊分別相加,得an-a1=n+(n-1)+(n-2)+…+2,所以an=n+(n-1)+(n-2)+…+2+1=.
4. (必修5P68復(fù)習(xí)題12改編)數(shù)列的前n項(xiàng)和Tn= .
[答案]3-
[解析]由an=(n+1),得
Tn=2×+3×+4×+…+(n+1), ①
Tn=2×+3×+4×+…+(n+1)·,?、?
由①-②,得
Tn=1+++…+-(n+1)·
=1+-(n+1)
=-.
所以Tn=3-.
5. (必修5P63閱讀改編)在斐波那契數(shù)列1,1,2,3,5,8,13…中,an,an+1,an+2的關(guān)系是 .
[答案]an+2=an+an+1