喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=====================
目 錄
摘要 2
第一章 引言 3
1.1 設(shè)計的目的、意義及技術(shù)要求 3
1.2 當(dāng)二包發(fā)展概況 4
1.3 前平面二包理論與應(yīng)用研究不足與研究展望 8
1.4 齒輪減速器的發(fā)展趨勢 9
第二章 平面二包的傳動原理和總傳動比分析設(shè)計 12
2.1 傳動原理 12
2.2 主要特點 12
2.3 傳動方案對比和選取 14
2.4 電動機的選擇 14
第三章 平面二次包絡(luò)環(huán)面蝸桿傳動的設(shè)計 18
3.1 主要參數(shù)的選擇原則 18
3.2 幾何尺寸計算 20
第四章 直齒輪設(shè)計計算 24
4.1 選定齒輪類型、精度等級、材料及齒數(shù) 24
4.2 按齒面接觸強度設(shè)計 24
4.3 按齒根彎曲強度設(shè)計 26
4.4 幾何尺寸計算 27
第五章 軸的設(shè)計計算 28
5.1 Ⅰ軸的設(shè)計計算 28
5.2 Ⅱ軸的設(shè)計計算 29
5.3 Ⅲ軸的設(shè)計計算 30
5.4 鍵的設(shè)計計算 31
結(jié)論與展望 33
參考文獻 34
致謝 35
附錄1 譯文 36
附錄2 英文原文 52
平面二次包絡(luò)環(huán)面蝸桿傳動數(shù)控轉(zhuǎn)臺的設(shè)計
摘要:為了拓寬數(shù)控機床的適用范圍,實現(xiàn)提高剛性,提高旋轉(zhuǎn)過程中的承載能力的弱點,本設(shè)計針對國內(nèi)的傳動轉(zhuǎn)臺的弱點,實現(xiàn)了可以承受較低切削扭矩的零件加工具體,通過整體方案和結(jié)構(gòu)設(shè)計,傳動裝置采用兩級傳動,其一級傳動由一對傳動比為1:63 的平面二次包絡(luò)環(huán)面蝸輪副實現(xiàn),二級傳動由一對傳動比為1:2.857的直齒輪實現(xiàn),總傳動比為1:180,這樣的結(jié)構(gòu)尺寸小,承載大,實用性強。
關(guān)鍵詞:數(shù)控轉(zhuǎn)臺;平面二次包絡(luò)環(huán)面蝸輪副;加工范圍
The design of plane double enveloping worm gear on the NC rotary table
Abstract: In order to broaden the scope of CNC machine tools to achieve increased rigidity and improve the carrying capacity of rotating process weaknesses, the design of drive turntable for domestic weakness can be achieved under low cutting torque machining of specific programs through the whole and structural design, gear drive with two levels, its a drive transmission ratio by a pair of one sixty-three plane double enveloping Worm achieved by a pair of secondary transmission ratio of 1:2.857 direct drive Gears, the total transmission ratio is 1:180, the structure of such small size, carrying a large, practical.
Keywords: NC rotary table; plane double enveloping worm gear; processing range
第一章 引言
1.1 設(shè)計的目的、意義及技術(shù)要求
我湘潭大學(xué)機械工程學(xué)院近期購買的一臺國產(chǎn)4軸4聯(lián)動數(shù)控銑床,配置的作為機床第4軸的數(shù)控轉(zhuǎn)臺就是TK13系列中的TK13250型號。在使用中,以充分暴露其剛性不足,在旋轉(zhuǎn)過程中承載能力差的弱點,這幾乎是國產(chǎn)數(shù)控轉(zhuǎn)臺的通病。生產(chǎn)廠家在其說明書已明確規(guī)定,轉(zhuǎn)臺出于非剎緊狀態(tài)時,“只能承受較低切削扭矩的零件加工”。因此,數(shù)控機床雖有多軸聯(lián)動的功能,卻很難在轉(zhuǎn)臺參與聯(lián)動的過程中進行實質(zhì)性的切削加工,極大地限制了數(shù)控機床的使用范圍。
上述弊端的存在,主要是因為傳動鏈最后一環(huán)的蝸桿蝸輪機構(gòu)品質(zhì)低劣,與國際上高品質(zhì)的蝸桿蝸輪副相去甚遠,精度、強度、壽命均不在一個檔次。
本設(shè)計目的為了研制高性能的數(shù)控轉(zhuǎn)臺,尤其以高扭矩為目標(biāo)。突破傳統(tǒng)的蝸桿蝸輪傳動模式,以平面二次包絡(luò)環(huán)面蝸桿傳動與普通斜齒輪搭配來減速,立志于提供高強度、高精度、高壽命的目的。
平面二次包絡(luò)環(huán)面蝸桿傳動(簡稱平面二包)是我1970年代首創(chuàng)的一種新型機械傳動形式。它是在美國“Cone”蝸桿(俗稱球面蝸桿)和日本東京工業(yè)大學(xué)“斜平面蝸輪”的基礎(chǔ)上發(fā)展而來的。該傳動比國際王牌產(chǎn)品美國 ConeDrive工藝性能更好,蝸桿齒面可以淬火并用砂輪磨削,嚙合質(zhì)量高。由于該蝸桿副齒面嚙合時呈雙線接觸,接觸點的法向速度大,綜合曲率半徑大,接觸應(yīng)力小,易形成油膜,具有承載能力大、效率高、使用壽命長等優(yōu)點。經(jīng)美國 ConeDrive 公司測試承載能力為其相應(yīng)產(chǎn)品的2.2倍。被譽為“當(dāng)代最優(yōu)越的蝸桿傳動”。為了推廣先進蝸桿傳動產(chǎn)品,國家已頒布“平面二次包絡(luò)環(huán)面蝸桿減速器國家標(biāo)準(zhǔn)”,并宣布淘汰落后的阿基米德蝸桿減速器。平面二次包絡(luò)環(huán)面蝸桿傳動是具有國內(nèi)外先進制造水平的高新技術(shù)產(chǎn)品,由于具有嚙合過程形成動壓油膜的獨特性能使其具有壽命長、效率高、承載能力強等優(yōu)點,特別適合于現(xiàn)代機械重載、高速的需要,深受用戶歡迎。因此,在整個冶金工業(yè)、造船工業(yè)、石油、化工機械、通用機械、輕工機械、兵器工業(yè)、建筑機械等都有很高的聲譽。
但由于其成形過程為二次包絡(luò),使其嚙合性能分析困難,加工工藝復(fù)雜,成本高,從而阻礙了大面積推廣應(yīng)用。為了改進這種蝸輪副的設(shè)計、制造方法,以便生產(chǎn)出高性能、高精度的平面二次包絡(luò)蝸輪副產(chǎn)品,促進其標(biāo)準(zhǔn)化、系列化、大批量數(shù)控化生產(chǎn),我國學(xué)者與工程技術(shù)人員近年來對其進行了廣泛的研究。
本設(shè)計要求設(shè)計出實現(xiàn)上述要求的較為合理的方案,并進行相關(guān)計算。最后對整個數(shù)控轉(zhuǎn)臺進行機械結(jié)構(gòu)設(shè)計,用UG完成每個零件的三維造型和整個系統(tǒng)的總裝圖,并用AutoCAD繪制整個試驗機的二維圖。
1.2 平面二包發(fā)展概況
平面蝸輪傳動產(chǎn)生于1922年美國,主要用于精密分度,如天文望遠鏡、齒輪測量儀、圓刻線機等。由于制造工藝簡單,容易獲得高精度,其齒距誤差可達到0.25″以內(nèi),只適用于大傳動比的場合。1951年日本佐藤發(fā)明了斜齒平面蝸輪傳動,由大傳動比擴展到中、小傳動比(1~10)。1969年日本石川昌一獲得了平面包絡(luò)環(huán)面蝸桿環(huán)面蝸桿傳動的專利,專利介紹的內(nèi)容是指這種蝸桿的標(biāo)準(zhǔn)傳動。其蝸輪可以用展成法加工,生產(chǎn)效率提高了,承載能力、傳動效率也有明顯地增長。我國從20世紀(jì)60年代初開始,由第一機械工業(yè)部機械科學(xué)研究院(現(xiàn)鄭州機械研究所)開展了平面蝸輪的研究工作。1964年與石景山鋼鐵公司機械廠(即首鋼機械廠)合作研制成中心距為540mm的平面蝸輪副,用于30t轉(zhuǎn)爐的傾轉(zhuǎn)機構(gòu)中;成功制造蝸輪直徑2160mm的精密分度蝸輪副,用天文遠鏡上,其一齒運動誤差小于1″。1971年首鋼公司機械廠在制造斜齒平面蝸輪副的基礎(chǔ)上,創(chuàng)造了我國第一套平面包絡(luò)環(huán)面蝸桿副,并用于生產(chǎn)。北京市和原冶金工業(yè)部于1977年命名這種蝸桿副為“首鋼(SG)-71型蝸桿副”。目前我國已成功研制成中心距1200mm和760mm的平面包絡(luò)環(huán)面蝸桿傳動壓下裝置,而且利用計算機對蝸桿副齒形參數(shù)進行優(yōu)化選擇,用機械CAD對蝸桿副、減速機及蝸輪滾刀進行輔助設(shè)計,用環(huán)面蝸桿專用機床及獨特的工藝路線,對蝸桿及蝸輪滾刀進行與其成形原理完全一致的加工,不需任何修形。
國內(nèi)主要的平面二次包絡(luò)環(huán)面蝸桿傳動的產(chǎn)品
河北吳橋鑫紀(jì)源減速機有限公司生產(chǎn)的PWU平面二次包絡(luò)環(huán)面蝸桿減速機:
圖 1-1 PWU平面二次包絡(luò)環(huán)面蝸桿減速機
PWU型平面二次包絡(luò)環(huán)面蝸桿減速器(GB/T16449—1996)其蝸齒面是以一個平面為母面,通過相對圓周運動,包絡(luò)出環(huán)面蝸桿的齒面,再以蝸桿的齒面為母線,通過相對運動包絡(luò)出蝸輪的齒面,稱為平面二次包絡(luò)環(huán)面蝸桿副。包括PWU、PWO、PWS型三種型式,適用于冶金、礦山、起重、運輸、石油、化工、建筑等行業(yè)機械設(shè)備的減速傳動。工作條件:兩軸交角為90°;蝸桿轉(zhuǎn)速不超過1500r/min;工作環(huán)境溫度為0~40℃,當(dāng)環(huán)境溫度低于0℃或高于40℃時,啟動前潤滑油要相應(yīng)加熱或冷卻;蝸桿軸可正、反向運轉(zhuǎn)。
PWU系列傳動比標(biāo)記方法
1.型號
1) PWU型—蝸桿在蝸輪之下平面二次包絡(luò)環(huán)面蝸桿減速器;
2) PWO型—蝸桿在蝸輪之上平面二次包絡(luò)環(huán)面蝸桿減速器;
3) PWS型—蝸桿在蝸輪之側(cè)平面二次包絡(luò)環(huán)面蝸桿減速器。
2.標(biāo)記
圖 1-2 標(biāo)記方法
表 1-1 減速器尺寸
a
H1
B
B1
C
C1
D
H
L
L1
L2
L3
L4
d-1
b-1
t1
l1
d2
b2
t2
l2
h
400
355
900
800
400
355
35
1250
600
600
450
630
375
110
28
116
165
180
45
190
240
55
450
400
1000
900
450
400
39
1400
670
670
500
710
425
125
32
132
165
200
45
210
280
60
500
450
1120
1000
500
450
42
1600
750
750
560
800
475
130
32
137
200
220
50
231
280
65
560
500
1250
1120
560
500
45
1800
850
850
630
900
530
150
36
158
200
250
56
262
330
72
630
560
1400
1250
630
560
48
2000
950
950
710
1000
600
170
40
179
240
280
63
292
380
80
710
630
1600
1400
710
630
52
2240
1060
1060
800
1250
670
190
45
200
280
320
70
334
380
88
a
H1
B
B1
C
C1
D
H
L
L1
L2
L3
L4
d-1
b-1
t1
l1
d2
b2
t2
l2
h
400
355
900
800
400
355
35
1250
600
600
450
630
375
110
28
116
165
180
45
190
240
55
450
400
1000
900
450
400
39
1400
670
670
500
710
425
125
32
132
165
200
45
210
280
60
500
450
1120
1000
500
450
42
1600
750
750
560
800
475
130
32
137
200
220
50
231
280
65
560
500
1250
1120
560
500
45
1800
850
850
630
900
530
150
36
158
200
250
56
262
330
72
630
560
1400
1250
630
560
48
2000
950
950
710
1000
600
170
40
179
240
280
63
292
380
80
710
630
1600
1400
710
630
52
2240
1060
1060
800
1250
670
190
45
200
280
320
70
334
380
88
圖 1-3 減速器結(jié)構(gòu)
PWU系列選型參數(shù)
1.中心距
PW型蝸桿減速器中心距a見表1-2。
表1-2中心距a/mm
第一系列
80??100??125??160? 200??250??315? 400??500??630
第二系列
140??180??225??280??355??450??560? 710
注:優(yōu)先選用第一系列。
2.公稱傳動比
PW型蝸桿減速器公稱傳動比iN見表1-3。
表1-3公稱傳動比i
第一系列
10?12.5?16?20?25?31.5?40??50??63
第二系列
14??18???22.4?? 28? 35.5? ?45???? 56
平面二次包絡(luò)環(huán)面蝸桿傳動在我國受到各方面的重視,其研究基本上以三條相對獨立的主線展開。
1) 基于方程的嚙合理論研究
我國關(guān)于平面二包的嚙合理論研究以空間微分幾何為工具,運用運動法、相似微分法等方法對其進行了廣泛研究,主要包括:接觸線與根切分析;接觸線與相對速度夾角分析;二次接觸原理的數(shù)學(xué)論證;蝸桿齒頂變尖及根切規(guī)律研究;變位傳動研究,變位因素包括中心距、傳動比、蝸桿軸向位移、平面傾角變化等;潤滑理論研究;其它相關(guān)研究。平面二次包絡(luò)環(huán)面蝸桿的初期嚙合理論研究的主要成員有:北京鋼鐵學(xué)院沈蘊方領(lǐng)導(dǎo)的蝸桿傳動科研組,南開大學(xué)數(shù)學(xué)家吳大任教授的齒輪嚙合理論研究組以及重慶大學(xué)等。他們的研究為生產(chǎn)實踐以及以后的理論研究奠定了基礎(chǔ)。
2) 以平面二包蝸輪副的制造為主要內(nèi)容的生產(chǎn)實踐研究
我國學(xué)者和工程技術(shù)人員對平面二包蝸輪副的制造工藝和制造設(shè)備進行了廣泛的理論與實踐研究,積累了豐富的實踐經(jīng)驗。1977年,首都鋼鐵公司研制了平面二包蝸輪副的專用磨頭。針對大型平面二包蝸桿磨削余量的嚴(yán)重不均的問題,第二重型機器廠的李成金(1997),西南交通大學(xué)的周汝忠(1997)相繼進行了研究。對于蝸輪滾刀設(shè)計問題,天津機械研究所的張亞雄、齊麟、代學(xué)坤(1995)等進行了研究。四川冶金設(shè)計院的杜厚金創(chuàng)造性地提出了單線布齒多頭滾刀的滾刀加工方法,推動了制造工藝的進步。1997年,秦大同等運用坐標(biāo)測量的方法提高了蝸桿制造精度,他還針對蝸桿在熱處理過程中的變形提出了偏差誤差補償辦法。1997年賀惠農(nóng)等運用等效模擬的方法對平面二包的潤滑機理進行了研究,得出了有益的結(jié)論。根據(jù)生產(chǎn)實踐人們發(fā)現(xiàn):利用對偶范成法加工出的蝸輪副的性能通過修形可以得到大大改善,許馮平等對此進行了分析。平面二包傳動對于制造與安裝誤差較為敏感,因而在實際中常常出現(xiàn)各種故障,文獻對此進行了較為系統(tǒng)深入的分析。為促進平面二包的進一步推廣,我國在1996年6月17日頒發(fā)了“平面二次包絡(luò)環(huán)面蝸桿傳動國家標(biāo)準(zhǔn)”,(1996年12月1日起實施,包括GBPT16442~6-1996共52項標(biāo)準(zhǔn)),標(biāo)志著我國平面二包制造水平將步入成熟期。其它如平面二包的機床設(shè)備改裝、工裝設(shè)計文獻都有較詳細的介紹。
3) 以計算機應(yīng)用為特點的CADPCAM等研究
近30年來,計算機技術(shù)與計算機圖形學(xué)技術(shù)迅速發(fā)展,廣大平面二包研究者利用計算機的計算能力與圖形功能對平面二包進行了廣泛研究。1992年李尚信運用日本東京大學(xué)M.Mabi的齒面接觸分析法對平面二包實際接觸狀況進行了分析。蔣伯英等提出了平面二包蝸桿齒厚的計算方法,用于蝸桿誤差檢測。大慶石油學(xué)院魏學(xué)海、姚立綱等對蝸桿傳動的強度計算進行了研究,并研制了平面二包的CADPCAM系統(tǒng),包括嚙合特性分析、優(yōu)化和基本參數(shù)計算模塊以及強度設(shè)計、加工平面二包的繪圖模塊,可參數(shù)化生成平面二包的各種二維機械零件圖和裝配圖。1992年上海水工機械廠在PC機上開發(fā)了平面二包CAD軟件包,包括畫一次包絡(luò)過程母平面上的接觸線及一界曲線模塊、畫蝸桿齒面的非工作區(qū)判別線及根切判別線模塊、蝸桿軸間齒厚計算模塊、計算平面二包綜合曲率模塊、幾何尺寸計算模塊等。為平面二包的設(shè)計帶來了方便。湘潭鋼鐵公司機修廠對平面二包傳動參數(shù)的優(yōu)化設(shè)計進行了研究,取得了較好的效果。值得重視的是1998年武漢汽車工業(yè)大學(xué)胡建軍,張仲甫等人對平面二包進行了三維造型的應(yīng)用研究[31],結(jié)果表明,三維造型對于平面二包的嚙合過程分析,齒面接觸分析,參數(shù)優(yōu)化設(shè)計等諸多傳統(tǒng)問題都能取得突破性的進展。以上計算機在平面二包研制中的應(yīng)用對其生產(chǎn)起到了一定的推動作用。
1.3 當(dāng)前平面二包理論與應(yīng)用研究不足與研究展望
由上可以看到,目前平面二次包絡(luò)環(huán)面蝸桿副的研究仍然遠遠不能滿足生產(chǎn)的需要。平面二包的設(shè)計與生產(chǎn)還停留在憑經(jīng)驗進行的水平,它的加工方法基本上仍舊采用傳統(tǒng)的對偶范成法,CAD的應(yīng)用還局限于進行一些簡單的設(shè)計計算、作零件圖等。平面二包的強度分析,有限元分析,跑合過程研究等還很不完善。由于缺乏強大的三維建模環(huán)境工具。未能對平面二包的嚙合過程、嚙合特性與表面性能進一步深入分析。目前隨著三維實體造型技術(shù)與CAM技術(shù)的發(fā)展,平面二次包絡(luò)的進一步研究至少可以從以下幾個方面進行。
1) 基于商品化三維實體造型系統(tǒng)的平面二次包絡(luò)環(huán)面蝸輪副三維造型研究?;赨G或ProEngineer的三維實體造型軟件的二次開發(fā)平臺進行平面二包的造型便于充分利用其強大的分析工具,如有限元分析等功能。進而在此基礎(chǔ)上開發(fā)平面二包三維CADPCAM系統(tǒng)。
2) 在三維模型基礎(chǔ)上進行平面二包嚙合過程分析與仿真,進行接觸面的型面分析
3) 蝸桿粗切的余量均化的問題通過建立車床加工方法的數(shù)字模型和蝸桿的三維實體模型可直接生成控制數(shù)控車床的走刀軌跡指令。先進行仿真切削,然后生產(chǎn)加工,因為利用數(shù)控車床可以動態(tài)控制走刀,從而可以加工出最均勻的余量,減少隨后的磨削加工量。
4) 修形問題。根據(jù)文獻在生產(chǎn)中,無論是用滾刀還是用飛刀加工蝸輪,不修正刃形或不修正加工參數(shù)獲得的傳動都是不理想的,利用數(shù)字實體模型可以方便地進行各種修形與變位試驗,從而便于尋求修形的最佳方法。
5) 跑合規(guī)律研究。跑合過程對于最終蝸輪副的性能有重要影響。因此應(yīng)重視跑合規(guī)律的研究。利用三維造型技術(shù),可以對各種跑合后的蝸輪副進行實測,建立其數(shù)學(xué)實體模型,然后與理論(或最初)的實體模型進行比較即可找出蝸輪副跑合過程中的磨損規(guī)律。
6) 平面二包接觸分析與油腔設(shè)計。平面二包環(huán)面蝸桿傳動過程中油腔的形狀、位置、大小變化規(guī)律對嚙合性能有極大地影響。通過蝸輪副的三維實體模型嚙合的動態(tài)仿真,可以十分直觀地從計算機屏幕上觀察油腔形狀及接觸線的變化規(guī)律,從而可以優(yōu)選參數(shù),得出最合適的油膜。
7) 有限元分析。平面二包的強度研究目前是個研究難點。通過建立平面二包蝸輪副的三維實體模型可以生成專業(yè)有限元分析程序的接口數(shù)據(jù),從而進行有限元的分析。
8) 蝸輪數(shù)控加工刀位軌跡生成。由于利用實體造型中的集合運算很容易實現(xiàn)碰撞分析等各種空間幾何分析,因而可以根據(jù)加工模型求解最佳數(shù)控刀位軌跡。
9) 平面二包蝸輪副的故障診斷。由于制造安裝誤差與運行過程中的磨損等原因,蝸輪副常常出現(xiàn)各種故障。通過蝸輪副的實體模型可以方便地通過變化安裝參數(shù)、尺寸參數(shù)來觀察嚙合中的現(xiàn)象,從而為判斷、分析運行故障提供依據(jù)。由上分析可知,建立在實體造型技術(shù)之上的虛擬技術(shù)對研制新型蝸桿傳動、改進現(xiàn)有蝸桿傳動的設(shè)計、制造過程均有巨大的意義。
1.4 齒輪減速器的發(fā)展趨勢
齒輪減速器是一種廣泛應(yīng)用于國防、宇航、交通、建筑、冶金、建材、礦山等領(lǐng)域的重要裝備,20世紀(jì)80年代以來,世界齒輪減速器技術(shù)有了很大的發(fā)展,產(chǎn)品發(fā)展的總趨勢是小型化、高速化、低噪聲和高可靠性,技術(shù)發(fā)展中最引人注目的是硬齒面技術(shù)、功率分支技術(shù)和模塊化設(shè)計技術(shù)。
硬齒面技術(shù)
硬齒面技術(shù)就是采用優(yōu)質(zhì)合金鋼鍛件,滲碳淬火磨齒的硬齒面齒輪,磨齒精度不低于ISO1328-1975的6級,綜合承載能力為中硬齒面調(diào)質(zhì)齒輪的3~4倍,為軟齒面齒輪的4~5倍。一個中等規(guī)格的硬齒面減速器的重量僅為中硬齒面減速器的1/3左右,且噪聲底、效率高、可靠性高。在高速船用透平齒輪,大型軋機齒輪,輕工、化工、礦山和建材機械用齒輪等應(yīng)用廣泛。主要特點:傳動的速度和功率范圍很大,傳動效率高,一對齒輪可達98~99.5%;精度愈高潤滑愈好,效率愈高;對中心距的敏感性小,即互換性好;裝配和維修方便;可以進行變位切削及各種修形、修緣,從而提高傳動質(zhì)量;易于進行精密加工,可以取得高精度,是各種齒輪中應(yīng)用最為廣泛的一種齒輪。
1) 傳動比。單級:7.1(軟齒面)、6.3(硬齒面);兩級:50(軟齒面)、28(硬齒面);三級:315(軟齒面)、180(硬齒面)。
2) 傳動功率。低速重載傳動可達6000kW以上,高速傳動可達40000kW以上。
3) 速度??蛇_到200m/s以上。
功率分支技術(shù)
功率分支技術(shù)主要指行星及大功率齒輪箱的功率雙分支及多分支裝置,其核心技術(shù)是均衡,廣泛應(yīng)用于冶金、礦山、電工、起重、運輸、石化、輕工機械等設(shè)備上,特別是在重載連續(xù)傳動領(lǐng)域。
在功率分支技術(shù)利用上,新一代的星輪減速器是一種全新的內(nèi)嚙合齒輪傳動裝置,實現(xiàn)了減速器內(nèi)部傳動機構(gòu)的單元化、通用化和標(biāo)準(zhǔn)化,產(chǎn)品的可靠性和承載能力得到了很大提高,可在更大范圍內(nèi)滿足用戶的不同需求。主要特點:
1) 傳動效率高。采用嚙合效率高的內(nèi)嚙和齒輪副的力分流結(jié)構(gòu),通過高載能力滾動星輪連續(xù)純滾動地傳遞轉(zhuǎn)矩和轉(zhuǎn)速,因而具有效率高的優(yōu)點,HJ單機效率可達95%以上,HN型效率可達93%,HH兩級串聯(lián)效率可達90%。
2) 承載能力高,結(jié)構(gòu)緊湊。由于星輪減速器同時兼?zhèn)洹按笏俦取⒋筠D(zhuǎn)矩、小體積”三者合一的優(yōu)點,其單位重量傳遞轉(zhuǎn)矩高達76N·m/kg以上,用于低速重載傳動領(lǐng)域可節(jié)材30~50%,比其他類型減速器重量平均減輕約40%。
3) 傳動平穩(wěn),噪聲低。減速器核心單元有多達14~28對齒同時嚙合,因此,產(chǎn)品不僅具有耐沖擊的優(yōu)點性能,而且具有工作可靠、傳動平穩(wěn)、噪音低、壽命長、齒輪可長期免維修實用等特點。
4) 速比范圍大,傳動比密寬。傳動比范圍寬而密集,一級減速時傳動比為18~80,串聯(lián)擴大級傳動比75~600,兩級串聯(lián)傳動比為450~5000,根據(jù)需要可以在4~25000之間選用需要的傳動比。
5) 核心單元模塊化,維護方便。
模塊化設(shè)計技術(shù)
模塊化設(shè)計技術(shù)已成為齒輪減速器發(fā)展的一個主要方向,它旨在追求高性能的同時,盡可能減少零件及毛坯的品種規(guī)格和數(shù)量,以便于組織生產(chǎn),形成批量,降低成本,獲得規(guī)模效益。同時,采用基本零件,增加產(chǎn)品的型式和花樣,盡可能多地開發(fā)實用的變型設(shè)計或派生系列產(chǎn)品,能由一個通用系列派生多個專用系列,擺脫了傳統(tǒng)的單一有底座實心軸輸出的安裝方式。增添了空心軸輸出的無底座懸掛式、浮動支承底座、電動機與減速器一體式連接、多方位安裝面等不同型式,擴大了使用范圍。
主要特點:模塊化組合齒輪減速機的顯著特點之一,是實施零部件集約化生產(chǎn)與組裝。按照其輸入模塊、輸出模塊和支承模塊三大體系設(shè)置的零部件,本著標(biāo)準(zhǔn)化、通用化、專業(yè)化、系列化規(guī)則設(shè)計,具有極強的通用性與互換性,這不僅大大減少了木模制作與部件制造程序,而且產(chǎn)品性能穩(wěn)定、合格率高、組裝方便、生產(chǎn)周期短、產(chǎn)品庫存率低、綜合經(jīng)濟效益高。
1) 高度模塊化設(shè)計:可以方便地配用各種型式的電動機或采用其他動力輸入。同種機型可配用多種功率的電動機。容易實現(xiàn)各機型間組合聯(lián)接。
2) 傳動比:劃分細,范圍廣。組合機型可以形成很大的傳動比,即輸出極低的轉(zhuǎn)速。
3) 安裝形式:安裝位置不受限制。
4) 強度高、體積小:箱體采用高強度鑄鐵。齒輪及齒輪軸采用氣體滲碳淬火精磨工藝,因而單位體積承載能力高。
5) 使用壽命長:在正確選型(包括選用適當(dāng)?shù)氖褂孟禂?shù))和正常使用維護的條件下,減速機(除易損件外)的主要零部件壽命一般不低于20000h。易損件包括潤滑油、油封以及軸承。
6) 噪聲低:減速機主要零部件都經(jīng)過精密加工,并通過組裝和測試,因而減速機噪聲較低。
7) 效率高:單機型效率不低于95%。
8) 可承受較大的徑向載荷。
9) 可承受不大于徑向力15%的軸向載荷。
目前,國外著名減速機公司SEW、FL ENDER、日本住友等紛紛在中國建立了自己的獨資或合資工廠,他們依靠先進的設(shè)備、技術(shù)、資金和生產(chǎn)規(guī)模等優(yōu)勢同國內(nèi)幾家大的減速器廠展開激烈競爭,國內(nèi)廠家在大功率減速器的競爭上經(jīng)常失利,而通用減速器產(chǎn)品已面臨危機。國內(nèi)減速器行業(yè)已加緊在硬齒面技術(shù)、功率分支技術(shù)和模塊化設(shè)計技術(shù)的研究和開發(fā)。
第二章 平面二包的傳動原理和總傳動比分析設(shè)計
2.1 傳動原理
平面二次包絡(luò)環(huán)面蝸桿副是以一個平面為母面,通過相對圓周運動,包絡(luò)出環(huán)面蝸桿的齒面,再以蝸桿的齒面為母面,通過相對運動包絡(luò)出蝸輪的齒面(見圖2-1)。與以往常用蝸桿的螺旋齒面在原理上雖然相似,但以往的螺旋齒面在原理上是以一直線或平面曲線為母線作螺旋運動而形成,這樣的蝸桿齒面絕大多數(shù)(除漸開線圓柱蝸桿外)難以用砂輪作符合其形成原理的精確磨削,因而影響了蝸桿及蝸輪滾刀的磨削工藝和淬火處理,影響蝸桿齒面硬度和制造精度的提高,以及齒面粗糙度的減小。
圖2-1 傳動原理示意圖
2.2 主要特點
承載能力大
與同規(guī)格的圓柱蝸桿相比,承載能力提高3~5倍。平面包絡(luò)環(huán)面蝸桿由于其外廓母線決定了能多齒同時進入嚙合(見圖2-2 a),這樣增大了接觸面積,減少了齒面壓力,能承受大的沖擊載荷。蝸桿蝸輪的接觸線是在沿齒高方向上,并且齒面的嚙合是在接觸線上,因此具有很小的相對曲率,使接觸應(yīng)力減少。雙線接觸的特點是在蝸桿和蝸輪嚙合中同時有兩條接觸線進入工作區(qū)域(見圖2-2 b)。這和增加嚙合齒數(shù)一樣,可提高承載能力。
圖2-2 蝸桿和蝸輪嚙合示意圖
精確地磨削蝸桿齒面———蝸桿的幾何尺寸和表面光潔度是直接由精密磨削完成,實現(xiàn)其高質(zhì)量的,保證耐磨防止大負荷時油膜破壞。
高精度的蝸桿———蝸桿設(shè)計上保證有足夠的剛性,以致于它的彎曲和其他因素不能影響上述有利的嚙合特性。
高效率
1) 大的滑動角。由于接觸線和相對滑移速度方向之間有很大的角度(滑動角),并且沿滑動的方向相對曲率半徑大,導(dǎo)致齒面間良好的潤滑條件是高效率的主要原因,效率最高可達95%。
2) 小的嚙合摩擦系數(shù)。精密磨削后的蝸桿使其嚙合磨擦系數(shù)降至最低限度。
無噪聲和穩(wěn)嚙合
為了防止處于嚙合時的蝸桿不產(chǎn)生沖擊和振動,對蝸桿入口和出口進行了倒坡處理。其加工工藝過程與成形原理完全一致,能夠可靠地保證制造精度和嚙合的理論狀態(tài)。
傳動比選擇有較大范圍
對設(shè)計中使環(huán)面蝸桿簡單地增加頭數(shù),可使其傳動比有較大范圍,因此可在一個單級減速器中有較大的傳動地選擇范圍。
高質(zhì)量的材質(zhì)及熱處理方法
平面包絡(luò)環(huán)面蝸桿減速器中的蝸桿是經(jīng)高質(zhì)量的鉻鉬鋼離子氮化處理,齒面硬度高(HRC>50),表面粗糙度等級提高(Ra<0.8),蝸輪是離心鑄造磷錫青銅,因此可獲得高的可靠性和大的載荷量。
結(jié)構(gòu)緊湊合理
平面包絡(luò)環(huán)面蝸桿減速器能傳遞較大的功率,且在此功率值下結(jié)構(gòu)緊湊合理。
節(jié)省能量
平面包絡(luò)環(huán)面蝸桿減速器具有效率高、節(jié)能等特點,尤其在長期運轉(zhuǎn)時特別顯著。
由于平面二次包絡(luò)環(huán)面蝸桿副具有上述特點,所以它在當(dāng)今世界上應(yīng)用最普通的5種蝸桿傳動中,以承載能力大、傳動效率高、使用壽命最長而越來越得到廣大用戶的歡迎。對5種蝸桿傳動在相同條件時的機械功率對比見圖2-3,速度i=40,中心距a=100~500mm,輸入轉(zhuǎn)速n=1500r/min。
圖2-3 5種蝸桿傳動機械功率對比
2.3 傳動方案對比和選取
本設(shè)計為了保證傳動效率和傳動比,設(shè)計由直齒輪傳動副和平面二次包絡(luò)環(huán)面蝸桿傳動副組合而成,這樣的就可以保證其大的傳動比同時也可以保證效率不會過小。其中有齒輪傳動在高速級和蝸桿傳動在高速級,前者結(jié)構(gòu)緊湊,而后者傳動效率高。所以本設(shè)計選用齒輪傳動在高速級的方案,其傳動簡圖如圖2-4。
圖2-4 傳動原理圖
2.4 電動機的選擇
由上可知減速器的輸入功率:;轉(zhuǎn)速:
由減速器的要求,選用交流伺服電機,所以選用韓國邁克彼恩Mecapion 品牌的交流伺服電機。由圖6-1得型號為 AMP-SB40GDK1G2180
圖2-5 型號選擇圖
轉(zhuǎn)速-扭矩特性:
圖2-6 轉(zhuǎn)速-扭矩特性
外形尺寸:
圖2-6 外形尺寸
特性: 表2-1 特性
伺服電機型號(APM-)
SB40G
伺服驅(qū)動器型號(APD-)
VS35
法蘭規(guī)格(□)
60
額定功率
[KW]
40
額定扭矩
[N.m]
16.7
[kgf.cm]
170.5
最大扭矩
[N.m]
50.1
[kgf.cm]
511.5
額定轉(zhuǎn)速
[r/min]
1500
最大轉(zhuǎn)速
[r/min]
3,000
慣量
[㎏ · ㎡ ×10-4]
80.35
[gf · cm · s2]
81.99
允許負載慣量
5倍電機慣量
額定功率響應(yīng)率
[KW/s]
34.75
速度、位置、檢測型號
標(biāo)準(zhǔn)型號(注1)
增量型2500(P/R)
選擇型號
絕對值,曼切斯特通信
規(guī)格與特征
結(jié)構(gòu)
全封閉,無通風(fēng)IP65(不包括軸部分和連接處)
額定時間
連續(xù)
環(huán)境濕度
工作溫度:0-40℃,存儲溫度:-20-80℃
環(huán)境濕度
低于90%(無凝露)
空氣
避免陽光直射,避免腐蝕氣體、易燃氣體、油霧或灰塵
高程/振動
振動加速度49m/s2(5G)
重量
[kg]
30.8
Metronix 是韓國第一品牌伺服電機和編碼器,是韓國最大伺服電機制造商,融合了日系與歐系伺服電機的性能特點,被廣泛應(yīng)用于歐美制造業(yè),在韓國電機行業(yè)處于領(lǐng)導(dǎo)地位。
Metronix 自主研發(fā)伺服電機、編碼器以及伺服驅(qū)動器核心技術(shù),三者達到高性能匹配。精湛的制造工藝,使電機的性價比達到前所未有的高度。寬泛的功率范圍,從30W到37KW,滿足了各種功率需求。獨特的空心軸設(shè)計,滿足了特殊客戶的需求。多種輸出軸端設(shè)計(如新穎的D-CUT,L-CUT形軸端),滿足各種裝配環(huán)境。根據(jù)客戶要求,可以在原廠專業(yè)裝配精密減速器,達到小于1弧分的回差精度。如需特殊結(jié)構(gòu)形式的伺服電機,可以在原廠進行定制。專為半導(dǎo)體制造業(yè)8”晶圓與12”晶圓設(shè)計的Spinner電機,把伺服特性升至極點。內(nèi)置控制卡型驅(qū)動器,可以完成多種運動控制,無需外加上位機控制器,成為運動控制系統(tǒng)最經(jīng)濟的選擇。此外,Metronix電機還可以與歐美驅(qū)動器兼容,比如以色列的Elmo驅(qū)動器。由于多種人性化的設(shè)計,已使Metronix成為伺服家族中的精品。全部現(xiàn)貨!我們將為您提供一流完善的售前與售后服務(wù)。
第三章 平面二次包絡(luò)環(huán)面蝸桿傳動的設(shè)計
3.1 主要參數(shù)的選擇原則
選擇蝸桿副的主要參數(shù)時,應(yīng)考慮以下幾個方面:
理想的接觸線分布。
最小的非工作區(qū)。
沒有根切現(xiàn)象。
足夠的齒頂厚度。
最多的包容齒數(shù)。
嘴夠大的潤滑角Ω(接觸線的切線與相對滑動速度之間的夾角)。
最大的綜合曲率半徑。
為滿足上述要求,主要應(yīng)考慮以下參數(shù)的選擇和相互配合:
傳動比。
蝸桿計算圓直徑。
齒的高度。
主基圓直徑。
蝸輪計算圓壓力角。
工作起始角和包容齒數(shù)。
母平面傾斜角。
在平面二包蝸輪副中,傳動比i對嚙合質(zhì)量的影響大,在多頭蝸桿小傳動的情況下更為突出。但是,傳動比往往是一個機組的固定參數(shù),一經(jīng)確定,一般不能任意改變或變動范圍范圍有限。所以,以后著重考慮在一定傳動比時,如何選擇其他參數(shù),以得到最佳的嚙合性能。
1) 蝸桿計算圓直徑
蝸桿計算直徑的大小,首先影響到蝸桿的強度和剛度。用公式確定蝸桿計算圓的直徑。式中稱為蝸桿計算圓直徑系數(shù)。
蝸桿計算圓的大小,確定了蝸桿和蝸輪齒面所處的位置。如果值取小些,齒面就比較靠近蝸桿的回轉(zhuǎn)軸線。同時,在一般情況下也比較靠近一界曲線。反之,就遠離一些。所以,系數(shù)值直接影響齒面上接觸線的分布、非工作區(qū)、根切、齒頂厚、綜合曲率半徑等因素。
從接觸線的分布規(guī)律來看,在其他條件不變的情況下,只要讓齒面盡量避開接觸線國語集中和交叉的區(qū)域,值取大些或小些都可以。
從非工作區(qū)和根切的規(guī)律來看,值取大些比較有利。這樣容易使一界曲線的大部或全部出于蝸桿齒面喉部以下,減少或根本消除蝸桿齒面上的非工作區(qū)和根切區(qū)。
從蝸桿齒頂厚和綜合曲率半徑的角度來看,值取大些也是有利的。
綜合起來,值取大值是有利的。但是還要考慮蝸桿的相對尺寸和攪油損失等因素。從理論分析和實際使用來看,最好按以下所給范圍選擇比較合適。
當(dāng)時,
當(dāng)時,
當(dāng)時,
當(dāng)時,
在同樣傳動比時,中心距小時可取偏大些,反之,可取偏小些。
如果要求自鎖,可按自鎖條件計算,然后再加以比較確定。
2) 主基圓直徑和壓力角
中心距a對一些嚙合特性具有像素規(guī)律,將主基圓直徑與中心距a聯(lián)系起來,在研究和設(shè)計上比較方便。采用公式計算。式中的稱為主基圓直徑系數(shù)。
主基圓的大小直接影響蝸桿齒的壓力角,而對接觸線分布、非工作區(qū)、根切等卻影響很小。一般來說主基圓大一些比較好。但是,主基圓的增大,雖然又增加包容齒數(shù)的有利一面,可是也有增大壓力角的不利一面。如果壓力角過大,會引起齒頂變尖。經(jīng)過綜合考慮,,在一般傳動比時,壓力角取。這是,主基圓直徑系數(shù)。如果傳動比較小(),則壓力角和值可適當(dāng)取小些。
值選取,然后驗算壓力角。為了便于加工,主基圓的直徑最好的圓整。
3) 工作起始角和包容齒數(shù)
一般蝸桿工作部分的長度L不能超出主基圓直徑,理論上相等是允許的。但是,考慮到加工誤差及裝配誤差等因素,蝸桿螺紋部分的實際長度必須小于主基圓直徑,即。
所以,必須有一個工作起始角,即。從非工作區(qū)、根切和齒頂不變尖來考慮,加大工作起始角是有利的。但是加大工作起始角勢必減小工作半角和包容齒數(shù),因此不能取得過大,一般取。
4) 母平面傾斜角
在平面包絡(luò)蝸桿副中,母平面傾斜角對接觸線分布、非工作區(qū)、根切、齒頂厚等因素的影響較大。同時它比較靈活,有較大選擇范圍。因此,總能夠選擇一個比較合適的值,得以達到較好的嚙合性能。和其他蝸輪副比較,這正是平面二包蝸桿副的一個優(yōu)越條件。
值對各因素的影響是不一致的。有些甚至是相互矛盾的。但是,在動力傳動中,還是取“大”值較好。用公式確定的值就屬于“大”值。
3.2 幾何尺寸計算
任務(wù)說明書要求:
蝸輪軸輸出轉(zhuǎn)矩
轉(zhuǎn)速,
傳動比
每天工作8h,15年(300天)
啟動頻繁,輕度沖擊
1) 確定中心距a
由式計算實際轉(zhuǎn)矩
使用系數(shù)
啟動頻率系數(shù)
由式驗算熱功率
冷卻方式系數(shù)
小時載荷率系數(shù)
環(huán)境溫度系數(shù)
由表<平面二次包絡(luò)環(huán)面蝸桿傳動功率>選取
2) 選擇材料及加工精度
蝸桿:40Cr,調(diào)質(zhì)硬度,齒面淬火硬度;
蝸輪:ZCuAl10Fe3;
加工精度:7級,齒面表面粗糙度。
3) 校核承載能力
查表<平面二次包絡(luò)環(huán)面蝸桿傳動的嚙合效率參考表>,取
蝸桿傳遞的功率為
蝸桿軸的計算功率為
式中由表查的。
按,,查表<平面二次包絡(luò)蝸桿傳動許用功率參考表>,得,故通過。
4) 基本參數(shù)的選擇
蝸桿頭數(shù);蝸輪齒數(shù);
蝸桿計算圓直徑;按表<平面包絡(luò)環(huán)面蝸桿傳動尺寸計算>,
取。
5) 幾何尺寸計算(按表<平面包絡(luò)環(huán)面蝸桿傳動尺寸計算>)
蝸輪計算圓直徑:
蝸輪端面模數(shù):
頂隙:
齒頂高:
齒根高:
蝸桿喉部根圓直徑:
校驗:
蝸桿齒頂圓直徑:
蝸桿齒頂圓弧半徑:
蝸桿齒根圓弧半徑:
蝸輪齒頂圓直徑:
蝸輪齒根圓直徑:
蝸桿喉部螺旋導(dǎo)程角:
齒距角:
主基圓直徑:
根據(jù)表<環(huán)面蝸桿傳動基本參數(shù)及蝸輪輪圈尺寸>,取標(biāo)準(zhǔn)值
分度圓齒形角:
包圍齒數(shù):
蝸桿包圍半角:
蝸桿起始角:
蝸輪齒寬:,圓整取
蝸桿齒寬:
蝸桿螺紋兩側(cè)肩帶寬度:,取
蝸桿最大齒頂圓直徑:
蝸桿最大齒根圓直徑:
蝸輪齒頂圓弧半徑:
蝸輪計算圓齒距:
j按表<蝸桿副公差及極限偏差>選取
蝸桿法相弦齒高:
蝸輪法相弦齒高:
蝸桿法相弦齒厚:
蝸輪法相弦齒厚:
母平面傾斜角:
式中Δ值如下:
圓整取
第四章 直齒輪設(shè)計計算
已知輸入功率:
小齒輪轉(zhuǎn)速:
齒數(shù)比:
由電動機驅(qū)動,每天工作8h,15年(300天)
啟動頻繁,輕度沖擊,轉(zhuǎn)向變化
4.1 選定齒輪類型、精度等級、材料及齒數(shù)
1) 按圖所示的方案,選用直尺圓柱齒輪傳動。
2) 選用7級精度(GB10095-2001)。
3) 材料選擇。
由表<常用齒輪材料及力學(xué)特性>選擇小齒輪材料為40Cr(調(diào)質(zhì)),硬度280HBS,大齒輪材料為45鋼(調(diào)質(zhì))硬度為240HBS,兩者材料硬度差為40HBS。
4) 選小齒輪齒數(shù),大齒輪齒數(shù),取。
4.2 按齒面接觸強度設(shè)計
由設(shè)計計算公式進行試算,即
1) 確定公式內(nèi)各計算數(shù)值
① 試選載荷系數(shù)。
② 計算小齒輪傳遞的轉(zhuǎn)矩。
③ 由表<圓柱齒輪的齒寬系數(shù)>選取齒寬系數(shù)。
④ 由表<彈性影響系數(shù)>查得材料的彈性影響系數(shù)。
⑤ 由圖<調(diào)質(zhì)處理鋼的>按齒面硬度查的小齒輪的接觸疲勞強度極限,大齒輪的接觸疲勞強度極限
⑥ 由式計算應(yīng)力循環(huán)次數(shù)。
⑦ 由圖<接觸疲勞壽命系數(shù)>取接觸疲勞壽命系數(shù);
⑧ 計算接觸疲勞許用應(yīng)力。
取失效概率為1%,安全系數(shù),由式得
2) 計算
① 試算小齒輪分度圓直徑,代入中較小的值。
② 計算圓周速度。
③ 計算齒寬。
④ 計算齒寬與齒高之比
模數(shù)
齒高
⑤ 計算載荷系數(shù)。
根據(jù),7級精度,由圖<動載系數(shù) 值>查得動載系數(shù);
直齒輪,;
由表<使用系數(shù) >查得使用系數(shù);
由表<接觸疲勞強度計算用的齒向載荷分布系數(shù)>用插值法查得7級精度、小齒輪相對支撐對稱布置時,。
由,查圖<彎曲強度計算的齒向載荷分布系數(shù)>得。
故載荷系數(shù):
⑥ 按實際的載荷系數(shù)校正所算得的分度圓直徑,由式得
⑦ 計算模數(shù)
4.3 按齒根彎曲強度設(shè)計
由式得彎曲強度的設(shè)計公式為
1) 確定公式內(nèi)的各計算數(shù)值
① 由圖<齒輪的彎曲疲勞強度極限>查得小齒輪的彎曲疲勞強度極限;大齒輪的彎曲強度極限;
② 由圖<彎曲疲勞壽命系數(shù)>取彎曲疲勞壽命系數(shù),;
③ 計算彎曲疲勞許用應(yīng)力。
取彎曲疲勞安全系數(shù),由式得
④ 計算載荷系數(shù)。
⑤ 查取齒形系數(shù)。
由表<齒形系數(shù)及應(yīng)力校正系數(shù)>查得 ,。
⑥ 查取應(yīng)力校正系數(shù)
由表<齒形系數(shù)及應(yīng)力校正系數(shù)>查得 ,。
⑦ 計算大、小齒輪的并加以比較。
大齒輪的數(shù)值大。
2) 設(shè)計計算
對比計算結(jié)果,由齒面接觸疲勞強度計算的模數(shù)m大于由齒根彎曲疲勞強度計算的模數(shù),由于齒輪模數(shù)m的大小主要取決于彎曲強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力,僅與齒輪直徑(即模數(shù)與齒數(shù)的成績)有關(guān),可取由彎曲強度算的模數(shù)2.2399并就近圓整為標(biāo)準(zhǔn)值,按接觸強度算得的分度圓直徑,算出小齒輪齒數(shù)
,取。
這樣設(shè)計出的齒輪傳動,既滿足了齒面接觸疲勞強度,又滿足了齒根彎曲疲勞強度,并做到結(jié)構(gòu)緊湊,避免浪費。
4.4 幾何尺寸計算
1) 計算分度圓直徑
2) 計算中心距
3) 計算齒輪寬度
取,。
第五章 軸的設(shè)計計算
5.1 Ⅰ軸的設(shè)計計算
Ⅰ軸上的功率 ;
Ⅰ軸的轉(zhuǎn)速 ;
Ⅰ軸的轉(zhuǎn)矩
初步確定軸的最小直徑
按式初步估算軸的最小直徑。選取軸的材料為40Cr,調(diào)質(zhì)處理。根據(jù)表<軸常用幾種材料的的 及 值>,取,于是得
輸入軸最小直徑顯然是安裝聯(lián)軸器處軸的直徑為了使所選的軸直徑與聯(lián)軸器的孔徑相適應(yīng),需要同時選取聯(lián)軸器型號。
聯(lián)軸器的計算轉(zhuǎn)矩,查表<工作情況系數(shù)>,考慮到轉(zhuǎn)矩變化中等,故取,則:
按照計算轉(zhuǎn)矩應(yīng)小于聯(lián)軸器公稱轉(zhuǎn)矩的條件,查標(biāo)準(zhǔn)GB/T 4323-2002,選用LT4型彈性套柱銷聯(lián)軸器,其公稱轉(zhuǎn)矩為63N?m。半聯(lián)軸器的孔徑,半聯(lián)軸器長度,半聯(lián)軸器與軸配合的轂孔長度。
軸承的選擇(要求壽命5000h)
此軸上齒輪分度圓直徑
軸圓周力
軸徑向力
軸軸向力
按國標(biāo)(GB/T 276-1994)試選深溝球軸承6005軸承,,基本額定靜載荷。驗算如下:
1) 球相對軸向載荷對應(yīng)的e值與Y值。
因,則,
2) 求當(dāng)量動載荷P。
3) 驗算6005軸承的壽命,根據(jù)式
故所選軸承滿足壽命要求。
軸上其他部件的尺寸選擇通過畫圖確定。
5.2 Ⅱ軸的設(shè)計計算
Ⅱ軸上的功率 ;
Ⅱ軸的轉(zhuǎn)速 ;
Ⅱ軸的轉(zhuǎn)矩
初步確定軸的最小直徑
按式初步估算軸的最小直徑。選取軸的材料為45,調(diào)質(zhì)處理。根據(jù)表<軸常用幾種材料的的 及 值>,取,于是得
軸承的選擇(要求壽命5000h)
此軸上蝸桿分度有圓直徑
軸圓周力
軸徑向力
軸軸向力
按國標(biāo)(GB/T 276-1994)試選深溝球軸承6005軸承,,基本額定靜載荷。驗算如下:
1) 球相對軸向載荷對應(yīng)的e值與Y值。
相對軸向載荷為,在表中介于之間,對應(yīng)的e
值為,Y值為
2) 用線性插值法求Y值。
3) 求當(dāng)量動載荷P。
4) 驗算6005軸承的壽命,根據(jù)式
故所選軸承滿足壽命要求。
軸上其他部件的尺寸選擇通過畫圖確定。
5.3 Ⅲ軸的設(shè)計計算
Ⅲ軸上的功率 ;
Ⅲ軸的轉(zhuǎn)速 ;
Ⅲ軸的轉(zhuǎn)矩
初步確定軸的最小直徑
按式初步估算軸的最小直徑。選取軸的材料為45,調(diào)質(zhì)處理。根據(jù)表<軸常用幾種材料的的 及 值>,取,于是得
軸承的選擇(要求壽命5000h)
此軸上蝸輪分度有圓直徑
軸圓周力
軸徑向力
軸軸向力
按國標(biāo)(GB/T 276-1994)試選圓錐滾子軸承30216,,基本額定靜載荷。驗算如下:
5) 相對軸向載荷對應(yīng)的X值與Y值。
6) 求當(dāng)量動載荷P。
7) 驗算30216軸承的壽命,根據(jù)式
故所選軸承滿足壽命要求。
軸上其他部件的尺寸選擇通過畫圖確定。
5.4 鍵的設(shè)計計算
1) Ⅰ軸上鍵連接的選擇
一般8級以上精度的齒輪有定心精度要求,應(yīng)選用平鍵連接。由于齒輪不在軸端,故選用圓頭普通平鍵(A型)。
根據(jù)從國標(biāo)(GB/T1095-2003,GB/T1096-2003)中查得鍵的截面尺寸為:寬度,高度。由輪轂寬度并參考鍵的長度系列,取鍵長(比輪轂寬度小些)。
鍵、軸和輪轂的材料都是鋼,由表<鍵連接的許用擠壓應(yīng)力、許用壓力>查得許用擠壓應(yīng)力,取其平均值,。鍵的工作長度,鍵與輪轂鍵槽的接觸高度。
可見鍵連接強度合格。
2) Ⅱ軸上鍵連接的選擇
一般8級以上精度的齒輪有定心精度要求,應(yīng)選用平鍵連接。由于齒輪不在軸端,故選用圓頭普通平鍵(A型)。
根據(jù)從國標(biāo)(GB/T1095-2003,GB/T1096-2003)中查得鍵的截面尺寸為:寬度,高度。由輪轂寬度并參考鍵的長度系列,取鍵長(比輪轂寬度小些)。
鍵、軸和輪轂的材料都是鋼,由表<鍵連接的許用擠壓應(yīng)力、許用壓力>查得許用擠壓應(yīng)力,取其平均值,。鍵的工作長度,鍵與輪轂鍵槽的接觸高度。
可見鍵連接強度合格。
3) Ⅲ軸上鍵連接的選擇
一般8級以上精度的齒輪有定心精度要求,應(yīng)選用平鍵連接。由于齒輪不在軸端,故選用圓頭普通平鍵(A型)。
根據(jù)從國標(biāo)(GB/T1095-2003,GB/T1096-2003)中查得鍵的截面尺寸為:寬度,高度。由輪轂寬度并參考鍵的長度系列,取鍵長。
鍵、軸和輪轂的材料都是鋼,由表<鍵連接的許用擠壓應(yīng)力、許用壓力>查得許用擠壓應(yīng)力,取其平均值,。鍵的工作長度,鍵與輪轂鍵槽的接觸高度。
可見鍵連接強度合格。
4) 輸出上鍵連接的選擇
一般8級以上精度的齒輪有定心精度要求,應(yīng)選用平鍵連接。由于齒輪在軸端,故選用單圓頭普通平鍵(B型)。
根據(jù)從國標(biāo)(GB/T1095-2003,GB/T1096-2003)中查得鍵的截面尺寸為:寬度,高度。由輪轂寬度并參考鍵的長度系列,取鍵長。
鍵、軸和輪轂的材料都是鋼,由表<鍵連接的許用擠壓應(yīng)力、許用壓力>查得許用擠壓應(yīng)力,取其平均值,。鍵的工作長度,鍵與輪轂鍵槽的接觸高度。
可見鍵連接強度合格。
結(jié)論與展望
本設(shè)計是使用平面二次包絡(luò)環(huán)面蝸桿傳動設(shè)計的轉(zhuǎn)臺,其中減速器高速級是使用直齒輪,其傳動比是1:2.857,低速級是平面二包蝸桿副,其傳動比是1:63,這樣設(shè)計的減速器在保證了其傳動效率的同時也保證了結(jié)構(gòu)緊湊的設(shè)計方法。而且這樣設(shè)計的轉(zhuǎn)臺在分度方面精度比較高。但是由上可以看到,目前平面二次包絡(luò)環(huán)面蝸桿副的研究仍然遠遠不能滿足生產(chǎn)的需要。平面二包的設(shè)計與生產(chǎn)還停留在憑經(jīng)驗進行的水平,它的加工方法基本上仍舊采用傳統(tǒng)的對偶范成法,CAD 的應(yīng)用還局限于進行一些簡單的設(shè)計計算、作零件圖等。平面二包的強度分析,有限元分析,跑合過程研究等還很不完善。由于缺乏強大的三維建模環(huán)境工具。未能對平面二包的嚙合過程、嚙合特性與表面性能進一步深入分析。目前隨著三維實體造型技術(shù)與CAM技術(shù)的發(fā)展,平面二次包絡(luò)的進一步研究至少可以從以下幾個方面進行。
(1) 基于商品化三維實體造型系統(tǒng)的平面二次包絡(luò)環(huán)面蝸輪副三維造型研究。
(2) 在三維模型基礎(chǔ)上進行平面二包嚙合過程分析與仿真,進行接觸面的型面分析
(3) 蝸桿粗切的余量均化的