喜歡這個資料需要的話就充值下載吧。。。資源目錄里展示的全都有預(yù)覽可以查看的噢,,下載就有,,請放心下載,原稿可自行編輯修改=【QQ:11970985 可咨詢交流】====================喜歡就充值下載吧。。。資源目錄里展示的全都有,,下載后全都有,,請放心下載,原稿可自行編輯修改=【QQ:197216396 可咨詢交流】====================
C620 機(jī)床傳動系統(tǒng)結(jié)構(gòu)設(shè)計(jì)
附錄 1 外文翻譯
第十四屆可持續(xù)制造全球會議,GCSM 3-5 2016 年 10 月,南非 Stellenbosch
由于不同的機(jī)器操作、切割材料和相應(yīng)的銑床的進(jìn)給運(yùn)動,需要大范圍的主軸速度。 現(xiàn)代機(jī)床偶爾配備兩個主軸以覆蓋更廣泛的應(yīng)用范圍,特別是在提高類似鋁合金一樣的 軟材料切削速率時,過時的機(jī)床不能提供高的主軸轉(zhuǎn)速。主軸速度增加(SSI)是可能 的解決方案,以便靈活地提高銑刀的切削去除率。本文研究了 SSI 在不同銑床上的應(yīng)用, 以及在資源和能源效率方面的研究現(xiàn)狀。因此,基于各自的加工操作、主軸輸入和銑床, 提供了一種選擇方法來證明現(xiàn)有 SSI 應(yīng)用的可行性。這使得在理論基礎(chǔ)上估算可持續(xù)效益。
為了開發(fā)一種資源有效的升級傳統(tǒng)銑床的方法,作者提出了在協(xié)作研究中心(CRC) 1026 B5 項(xiàng)目中應(yīng)用附加組件的方法。這個方法的目的是以靈活的方式增強(qiáng)各自機(jī)床的特定功能。 圖 1 示出了 X 和 Y 平面[1] 中的銑床( thereafter: FP4 )。
Fig. 1. Deckel FP4NC 銑床 (a) 增加精度的附加裝置; (b) 增產(chǎn)附加裝置
命名法
ae
切削寬度
高速加工(HSM)在汽車、飛機(jī)和模具工業(yè)中起著至關(guān)重要的作用。通過增加主軸 轉(zhuǎn)速,實(shí)驗(yàn)切削力和溫度的降低已被實(shí)驗(yàn)觀察到[2]??蛇_(dá)到的切削去除率主要在 QW= 150~1500 cm 之間,切削速度 Vc 達(dá)到 10000 min -1 達(dá)到[2]。切削條件對降低能耗、提高加工效率起著重要作用。基尼內(nèi)賈德等。比較了在不同的切削條件下,過時的 FP4 和新的DMG DMU50 銑床的能耗。目的是確定影響不同工具、工藝和材料可達(dá)到的去除率的因素。結(jié)果表明,特別是在精加工過程中,最大可能的主軸轉(zhuǎn)速是最大可達(dá)到的去除 率的瓶頸??傊?,發(fā)現(xiàn)在切削操作中,過時的機(jī)床具有比 40%更高的比能耗。由于最大主軸轉(zhuǎn)速和主軸功率的限制,過時的機(jī)床不能達(dá)到更高的去除率。在加工材料方面,能 量效率進(jìn)一步受到限制,這允許比 FP4 提供的更高的切削速度,例如鋁合金〔3〕。
12
ap
切削深度
D
刀具直徑
Fcmz
平均切削力
fz
每齒進(jìn)給量
hm
平均厚度
κ
壓力角
kc
切削力
K
矯正因子(Kv:切削速度,KVer::刀具磨損 Kγ ::切屑厚度)
m
斜率
n
主軸轉(zhuǎn)速
φ s
切削角
Q
切削去除率
z
齒數(shù)
為了提高加工效率,一系列工作開始展開。Rangalajand 和 Dornfeld 進(jìn)行了一個案例研究,以確定一個最佳角度的面銑削和粗加工[4]。通過對動能回收系統(tǒng)(KER)的仿 真,提出了一種提高機(jī)床能效的有效方案,仿真結(jié)果表明,KER 的使用可減少 5~25%的功耗(5)。石棉實(shí)驗(yàn)測量了切削條件對功率消耗的影響。通過改變切削速度、進(jìn)給速 度、徑向和軸向切削深度,端銑刀的功耗降低了約 40%。[6]
為了提高傳統(tǒng)機(jī)床的主軸速度,可以通過所謂的 SSI 靈活地升級,參見圖 2。這些SSI 要么由機(jī)床主軸驅(qū)動,要么作為機(jī)械變速器工作,或者它們由集成流體或電驅(qū)動來驅(qū)動。
在他們的文章中,薩爾加多和阿隆索描述了高速加工機(jī)械 SSI 的設(shè)計(jì)過程[7]。其目的是通過一個乘法器齒輪箱升級一個傳統(tǒng)的機(jī)床。為了通過機(jī)械傳動增加主軸速度, 使用了四構(gòu)件行星齒輪系(PGT)(圖 2)。在減小各自設(shè)計(jì)方案的體積和動能的同時, 實(shí)現(xiàn)了大于 1:10 的速度比。
圖 2.SSI(a)機(jī)械傳動; (b)流體驅(qū)動(冷卻劑和空氣)[7,9]
除了提高主軸速度 Yamanaka 等其他人采用楔形滾子牽引傳動改善表面粗糙度。此外,所設(shè)計(jì)的SSI 能夠通過壓電薄膜[8]定量地測量切削力。
應(yīng)用流體驅(qū)動主軸對大型機(jī)床進(jìn)行改造,拓寬了應(yīng)用范圍。因此舒伯特等人提出一 種用于半精加工、精加工和微銑削工藝的冷卻劑驅(qū)動主軸[9]。特別是對于加工模具和 模具,需要高主軸功率和精加工操作的粗加工過程的組合,其中需要高主軸速度,可以 通過冷卻劑驅(qū)動的主軸。對于一個示例性的渦輪部件,結(jié)果表明制造時間可以減少約75%。
正如前面所討論的,SSI 的應(yīng)用受到所需切削功率的限制。因此,考慮了不同的切削參數(shù)(刀具直徑、工件材料和切削速度),以估計(jì)所需的切削力、功率和可實(shí)現(xiàn)的切 削去除率。所有的數(shù)值都是通過計(jì)算估算的,在機(jī)械加工試驗(yàn)中沒有得到檢驗(yàn)。沒有或 具有機(jī)械SSI 的過程的值取決于所使用的機(jī)器。這意味著只有 FP4 銑床的結(jié)果是有效的。它的最大主軸速度為 N=3150/分鐘,并作為過時的傳統(tǒng)銑床的典型例子。重點(diǎn)介紹了三種 SSI 模型:機(jī)械式、空氣驅(qū)動式和冷卻劑驅(qū)動型 SSI。對于每種類型,已經(jīng)選擇了一個例子進(jìn)行比較。機(jī)械齒輪的傳動比為 5??諝怛?qū)動的主軸提供 N=40000/分鐘的轉(zhuǎn)數(shù)和N=30000/分鐘的冷卻劑驅(qū)動。它們的旋轉(zhuǎn)數(shù)分別取決于空氣和冷卻劑的壓力和流速。
為了計(jì)算銑削過程的平均切削力,采用 KiZZLE 方程[10]。因此,平均芯片厚度 HM 是需要的,并且可以通過以下方程獲得:
m
z
h = 114.6° · f
fs
· ae
D
(1)
和
cosjs
= (1 - 2ae )
D
(2)
在方程(1)和(2)中,φ S 表示切削弧角[O],fz 每齒進(jìn)給[mm ],ae 切削寬度[mm ] 和D 刀具直徑[mm ]。此外,特定切削力 kc 是必需的,并且可以用以下方法來估算
(3)
kc1
n
=
k
c m
m
在方程式(3)中,kc1 代表特定切削力[ N / mm2 ]和m 斜率的主值。利用這些方程可以計(jì)算出平均切削力 Fcmz :
Fcmz
= ap
sin k
· hm
· kc
· Kg
· Kv
· KVer
(4)
在方程(4)中,κ 是壓力角和ap 的切割深度。Kγ , Kv 和KVer 代表了切屑厚度、切削速度和刀具磨損的校正因素。對不同刀具直徑的平均切削力進(jìn)行估算,并與主軸以 最高速度提供的力進(jìn)行比較。只要切削力小于主軸力,刀具直徑就可以使用。對于最高 可能的刀具直徑,使用公式(5)計(jì)算去除率 Q:
Q = ae · ap · f z · z · n (5)
在方程式(5)中,Z 是齒數(shù)和N 的轉(zhuǎn)數(shù)[ 1/min ]。對于這個例子,銑刀有推薦的切削寬度。
ae = 0.1 · D (6) 推薦切割深度為:
ap = 1.5 · D (7)
表 1 和表 2 概述了在最大轉(zhuǎn)數(shù)下不同刀具直徑的不同 SSI 的去除率。標(biāo)記為星(*) 的條目僅是理論值,而 FP4 銑床無法實(shí)現(xiàn),因?yàn)樗?jì)算的切削力超過所提供的扭矩。由于FP4 的動態(tài)特性,刀具直徑、切削寬度和切削深度的限制還沒有考慮。這些表顯示了SSI 的應(yīng)用范圍??梢郧宄乜闯?,高刀具直徑僅在沒有 SSI 的情況下才可用。對于需要小刀具直徑的工藝,空氣和冷卻劑驅(qū)動的 SSI 具有優(yōu)勢,尤其是銑削鋁時。切削力相對較小,切削速度大。
冷卻劑驅(qū)動的SSI 可以達(dá)到比機(jī)械或無 SSI 更高的去除率。
表 1.鋼銑削去除率Q[ cm3 / min
]的比較
刀具直徑
[mm]
0.5
1
2
4
6
8
10
12
16
未使用的
0.002
0.015
0.121
0.968
3.674
7.620
13.608
21.773*
43.062
機(jī)械的
0.010
0.076
0.605
4.838.
18.371
38.102*
68.040*
108.864*
215.309*
空氣驅(qū)動
的
0.024
0.192
1.536
12.288*
46.656*
96.768*
172.800*
276.480*
546.816*
冷卻液驅(qū)
動
0.018
0.144
1.152
9.216*
34.992*
72.576*
129.600*
207.360*
410.112*
表 2.鋁銑削去除率Q[ cm3 / min
]的比較
*理論值
刀具直徑
[mm]
0.5
1
2
4
6
8
10
12
16
未使用的
0.001
0.011
0.081
0.726
2.109
5.685
11.907
21.501
48.868*
機(jī)械的
0.007
0.057
0.454
3.629
10.546
28.426
59.535*
107.503*
244.339*
空氣驅(qū)動
的
0.018
0.144
1.152
9.216*
26.784*
72.192
151.200*
273.024*
620.544*
冷卻液驅(qū)
動
0.014
0.108
0.864
6.912
20.088
54.144*
113.400*
204.768*
465.408*
*理論值
表 3 和表 4 顯示了不同主軸增速器的去除率,其中最大可能的刀具直徑。由于所提供的低功率,空氣和冷卻劑驅(qū)動的主軸不能提供允許使用高刀具直徑的扭矩。盡管主軸 轉(zhuǎn)速高,流體驅(qū)動 SSI 達(dá)到相對較低的去除率。這與沒有 SSI 的FP4 銑床相比,減少了加工時間。與此相反,機(jī)械模型將切削去除率提高了約 30%,這導(dǎo)致了時間利潤,從而提高了生產(chǎn)率。刀具直徑越小,切削寬度 ae 和切削深度ap 越小,刀具直徑越大。
表 3.具有最高可能刀具直徑的鋼銑削的去除率。
主軸增速器
未使用的
機(jī)械的
空氣驅(qū)動的
泠卻液驅(qū)動的
最大可能刀具直徑[mm]
10
6
2
2
切削寬度ae [mm]
1
0.6
0.2
0.2
切削深度ap [mm]
15
9
3
3
每齒進(jìn)給量fz [mm]
0.072
0.054
0.016
0.016
齒數(shù)
4
4
4
4
轉(zhuǎn)數(shù)n[min -1 ]
3,150
15,750
40,000
30,000
去除率Q[cm3/min]
13.608
18.371
1.536
1.152
表 4. 鋁銑削刀具的最大切削直徑
主軸增速器
未使用的
機(jī)械的
空氣驅(qū)動的
泠卻液驅(qū)動的
最大可能刀具直徑[mm]
12
8
2
4
切削寬度ae [mm]
1.2
0.8
0.2
0.4
切削深度ap [mm]
18
12
3
6
每齒進(jìn)給量fz [mm]
0.079
0.047
0.012
0.024
齒數(shù)
4
4
4
4
轉(zhuǎn)數(shù)n[min -1 ]
3,150
15,750
40,000
30,000
去除率Q[cm3/min]
21.501
28.426
1.152
6.912
SSI 作為添加劑的應(yīng)用是一種有前途的措施,以提高過時的 FP4 銑床的生產(chǎn)率,特別是通過提高去除率。對于具有高刀具直徑的粗加工,機(jī)械 SSI 有助于提高去除率,從而節(jié)省加工時間。適用于銑削直徑為 8 mm 的鋼和鋁。對于需要小刀具直徑的操作,使用空氣和冷卻劑驅(qū)動的主軸的切削去除率比FP4 機(jī)床大得多,因?yàn)闆]有更高的切削速度, 或者沒有機(jī)械 SSI??諝夂屠鋮s劑驅(qū)動的 SSI 可根據(jù)工件材料處理刀具直徑達(dá) 4 毫米。通過減小切削寬度 AE 和切削深度AP,刀具直徑越大,切削力越小。
這項(xiàng)工作是由德國研究基金會(德意志 FoSunggsEngEnSHIFT)資助的,在合作研究中心 1026(SFB)內(nèi)。
[1] Kianinejad, K.; Thom, S.; Kushwaha, S.; Uhlmann, E.: Add-on Error Compensation Unit as Sustainable Solution for Outdated Milling Machines. Procedia CIRP 40 (2016), p. 174 - 178.
[2] Neugebauer, R.; Drossel, W.; Wertheim, R.; Hochmuth, C.; Dix, M.: Resource and Energy Efficiency in Machining Using High-Performance and Hybrid Processes. Procedia CIRP 1 (2012), p. 3 - 16.
[3] Kianinejad, K.; Uhlmann, E.; Peukert, B.: Investigation into Energy Efficiency of Outdated Cutting Machine Tools and Identification of Improvement Potentials to Promote Sustainability. Procedia CIRP 26 (2015), p. 533 - 538. [4] Rangarajanl, A.; Dornfeld, D.: Efficient Tool Paths and Part Orientation for Face Milling. CIRP Annals 53 (2004) 1, p. 73 - 76.
[5] Diaz, N.; Choi, S.; Helu, M.; Chen, Y.; Jayanathan, S.; Yasui, Y.; Kong, D.; Pavanaskar, S.; Dornfeld, D.: Machine Tool Design and Operation Strategies for Green Manufacturing. 4th CIRP International Conference on High Performance (2010).
[6] Mori, M.; Fujishima, M.; Inamasu, Y.; Oda, Y.: A study on energy efficiency improvement for machine tools. CIRP Annals – Manufacturing Technology 60 (2011) 1, p. 145 - 148.
[7] Salgado, D. R.; Alonso, F. J.: Optimal mechanical spindle speeder gearbox design for high-speed machining. The International Journal ofAdvanced Manufacturing Technology 40 (2009) 7-8, p. 637 - 647.
[8] Yamanaka, M.; Sugimoto, K.; Hashimoto, R.; Inoue, K.: Intelligent speed-increasing spindle using traction drive. Precision Engineering 35(2011) 2, p. 191 - 196.
[9] Schubert, A.; Harpaz, O.; Books, B.; Eckert, U.; Wertheim, R.: HPC for improved efficiency on standard machine tools by using new fluid-driven spindles. 11th Global Conferene on Sustainable Manufacturing (2013).
[10] Hirsch, A.: Werkzeugmaschinen. Wiesbaden: Vieweg+Teubner Verlag, 2012.
附錄 2 外文原文
C620 型普通車床是我國車床史上比較典型的型號之一,是金屬切削加工領(lǐng)域?qū)嵱眯郧也僮餍暂^好耐用的機(jī)床。本文以 C620 型車床為研究對象,依進(jìn)行傳動系統(tǒng)的設(shè)計(jì), 擬定主傳動系統(tǒng)方案及選定傳動系統(tǒng)結(jié)構(gòu)形式,進(jìn)行主軸箱等重要零部件的設(shè)計(jì)和校 核,進(jìn)行相關(guān)部件的的受力分析等方法,詳細(xì)闡述了 C620 車床傳動系統(tǒng)結(jié)構(gòu)的設(shè)計(jì)過程。
本文對 C620 車床的傳動系統(tǒng)的主要結(jié)構(gòu)進(jìn)行了設(shè)計(jì)與說明,對電機(jī)、皮帶、傳動比等進(jìn)行了計(jì)算,對床頭箱、進(jìn)給箱、溜板箱等主要部件進(jìn)行了詳細(xì)設(shè)計(jì)。對床頭箱箱 體進(jìn)行了查表估算、確定了 V 帶輪尺寸、計(jì)算確定了多片式摩擦離合器級數(shù)、對床頭箱內(nèi)兩根傳動軸、進(jìn)給箱的部分齒輪與軸、溜板箱的部分齒輪進(jìn)行了計(jì)算校核,包括尺寸 的初步估算與強(qiáng)度校核。同時對各部分的工作過程進(jìn)行了詳細(xì)的說明,主要包括床頭箱 內(nèi)部各軸間相互配合從而實(shí)現(xiàn) 21 級變速的過程、進(jìn)給箱中通過手柄改變基本螺距與工作狀態(tài)、溜板箱通過手柄實(shí)現(xiàn)橫向與縱向刀架進(jìn)給的轉(zhuǎn)化過程,展現(xiàn)了該傳動系統(tǒng)執(zhí)行 的可行性。
關(guān)鍵詞:C620 傳動系統(tǒng);床頭箱;進(jìn)給箱;溜板箱
Ⅰ
ABSTRACT
Ordinary lathe C620 is one of typical model in the history of our lathe, is a good metal cutting processing field practicability and operability of machine tool. This paper takes the C620 lathe as the research object. According to the design of the transmission system, the main transmission system scheme and the selected transmission system structure form, the design and checking of the important parts such as the spindle box, the stress analysis of the related parts are carried out, and the design process of the transmission system structure of the C620 lathe is elaborated in detail.
The main structure of the transmission system of C620 lathe is designed and explained in this paper. The motor, belt and transmission ratio are calculated. The main parts, such as the headbox, feed box and slide box, are designed in detail. The calculation and calculation of the size of the V pulley, the calculation and determination of the series of multi piece friction clutch, the calculation and checking of the partial gear in the head box, the part of the gear and the shaft and the slide box are checked, including the preliminary estimate of the size and the strength check. At the same time, the working process of each part is explained in detail, mainly including the coordination of each axle in the headstock to realize the process of the 21 stage transmission, the change of the basic pitch and working state through the handle in the feed box, the transformation process of the horizontal and longitudinal blades by the slide box through the handle, and the transmission system is displayed. The feasibility of execution. Keywords:C620 transmission system; headstock; feed box; slide box.
Ⅱ
目錄
摘 要 I
ABSTRACT II
1. 緒論 1
1.1 金屬切削機(jī)床國內(nèi)外發(fā)展趨勢 1
1.2 國內(nèi)機(jī)床與國外機(jī)床的差距 2
1.3 C620 主要技術(shù)參數(shù)概述 2
2. C620 傳動系統(tǒng)設(shè)計(jì) 4
2.1 確定傳動系統(tǒng)圖 4
2.2 確定主電機(jī)功率 4
2.3 確定傳動組及各傳動組中傳動副的數(shù)目 5
2.4 分配總降速比 5
2.5 皮帶直徑和齒輪齒數(shù)的確定以及轉(zhuǎn)速圖的確定 6
2.6 轉(zhuǎn)速圖擬定 7
3. C620 機(jī)床床頭箱結(jié)構(gòu)設(shè)計(jì) 8
3.1 總體結(jié)構(gòu) 8
3.2 箱體尺寸設(shè)計(jì) 9
3.3 軸Ⅰ設(shè)計(jì)計(jì)算 9
3.4 V 帶輪的設(shè)計(jì)計(jì)算 11
3.5 多片式摩擦離合器的選型和計(jì)算 14
3.6 軸Ⅱ設(shè)計(jì)計(jì)算 15
4. C620 機(jī)床進(jìn)給箱結(jié)構(gòu)設(shè)計(jì) 19
4.1 總體結(jié)構(gòu) 19
4.2 軸ⅩⅢ的設(shè)計(jì)與校核 19
4.3 對ⅩⅢ軸齒輪的的設(shè)計(jì)與校核 21
5. C620 機(jī)床溜板箱結(jié)構(gòu)設(shè)計(jì) 26
5.1 總體結(jié)構(gòu) 26
5.2 軸Ⅲ部分齒輪的設(shè)計(jì)與校核 26
6.結(jié)論 31
參考文獻(xiàn) 32
附錄 1 外文翻譯 33
附錄 2 外文原文 39
C620 機(jī)床傳動系統(tǒng)結(jié)構(gòu)設(shè)計(jì)
1. 緒論
車床是用于軸類圓形部件,圓盤類部件等具有可回轉(zhuǎn)表面的工件的加工設(shè)備,其是 使用最普遍和最廣泛的機(jī)床之一。C620 型普通車床的主要組成部件有:主軸箱、進(jìn)給箱、溜板箱、刀架、尾架、光杠、絲杠和床身。
主軸箱:又稱床頭箱,它的主要任務(wù)是將主電機(jī)傳來的旋轉(zhuǎn)運(yùn)動經(jīng)過一系列的變速 機(jī)構(gòu)使主軸得到所需的正反兩種轉(zhuǎn)向的不同轉(zhuǎn)速,同時主軸箱分出部分動力將運(yùn)動傳給 進(jìn)給箱。主軸箱中等主軸是車床的關(guān)鍵零件。主軸在軸承上運(yùn)轉(zhuǎn)的平穩(wěn)性直接影響工件 的加工質(zhì)量,一旦主軸的旋轉(zhuǎn)精度降低,則機(jī)床的使用價值就會降低。
進(jìn)給箱:又稱走刀箱,進(jìn)給箱中裝有進(jìn)給運(yùn)動的變速機(jī)構(gòu),調(diào)整其變速機(jī)構(gòu),可得 到所需的進(jìn)給量或螺距,通過光杠或絲杠將運(yùn)動傳至刀架以進(jìn)行切削。
絲杠與光杠:用以聯(lián)接進(jìn)給箱與溜板箱,并把進(jìn)給箱的運(yùn)動和動力傳給溜板箱,使 溜板箱獲得縱向直線運(yùn)動。絲杠是專門用來車削各種螺紋而設(shè)置的,在進(jìn)行工件的其他 表面車削時,只用光杠,不用絲杠。
溜板箱:是車床進(jìn)給運(yùn)動的操縱箱,內(nèi)裝有將光杠和絲杠的旋轉(zhuǎn)運(yùn)動變成刀架直線 運(yùn)動的機(jī)構(gòu),通過光杠傳動實(shí)現(xiàn)刀架的縱向進(jìn)給運(yùn)動、橫向進(jìn)給運(yùn)動和快速移動,通過 絲杠帶動刀架作縱向直線運(yùn)動,以便車削螺紋。
設(shè)計(jì)普通車床的主傳動系統(tǒng),首先要擬定一些加工過程的對象和參數(shù),熟悉其加工 過程的要求,以此才確定機(jī)床的相關(guān)參數(shù)。本次設(shè)計(jì)主要是根據(jù) C620 機(jī)床的一些參數(shù)以及加工能力來進(jìn)行相關(guān)問題參數(shù)的擬定和解決,同時結(jié)合以往資料,才會設(shè)計(jì)出合理 且經(jīng)濟(jì)的機(jī)床主傳動系統(tǒng)。
1.1 金屬切削機(jī)床國內(nèi)外發(fā)展趨勢
機(jī)床伴隨著社會進(jìn)步已逐步成為人類生產(chǎn)勞動的重要工具,同時也是社會生產(chǎn)力發(fā) 展水平的重要衡量指標(biāo)。追溯一下,普通車床已經(jīng)歷了近二百年的歷史。又隨著電子技 術(shù),計(jì)算機(jī)技術(shù)與自動化技術(shù)的長足進(jìn)步,精密機(jī)械和測量技術(shù)也運(yùn)用到了機(jī)床本身且 都有了一定的發(fā)展,所以機(jī)電一體化生產(chǎn)的新型機(jī)床數(shù)控機(jī)床孕育而生。使用數(shù)控機(jī)床 后續(xù)表明了其獨(dú)特的優(yōu)勢和強(qiáng)大的活力,很多原來人工操作無法解決的很多問題,都找 到科學(xué)解決的方法。數(shù)控機(jī)床是一種通過數(shù)字信息控制,控制機(jī)床根據(jù)程序給定的軌跡, 自動加工的機(jī)電一體化的加工設(shè)備,此種機(jī)床經(jīng)過半個世紀(jì)的發(fā)展,成為了現(xiàn)代制造業(yè) 的重要標(biāo)志,中國制造行業(yè)中,數(shù)控機(jī)床的應(yīng)用變得越來越廣泛,同時也是企業(yè)實(shí)力的 綜合體現(xiàn)。
金屬切削機(jī)床是人類由手工作業(yè)轉(zhuǎn)變?yōu)闄C(jī)械作業(yè)的新工具,是生產(chǎn)工具進(jìn)步和發(fā)展 的產(chǎn)物。鉆孔,打磨外形最原始的方法起初是依靠雙手來實(shí)現(xiàn)。一般情況的操作對象還
都是木頭類。隨后隨著金屬等材料的出現(xiàn),一些原始的加工方法不足以滿足加工的需要, 所以就出現(xiàn)了人力的回轉(zhuǎn)車的雛形。在初始社會,由于生產(chǎn)工具的缺乏,木材材料和金
44
屬材料在加工方向相比金屬材料要難于木材材料。同時加工金屬類型的材料是人力所無 法完成的。隨著生產(chǎn)技術(shù)的革新,一些新的動力的出現(xiàn)改變了金屬加工能力。比如說蒸 汽機(jī),液壓動力,氣動等。同時在最近一段時間,電子控制計(jì)算機(jī)技術(shù)和信息技術(shù)等一 些技術(shù)的優(yōu)越性體現(xiàn)出來,機(jī)床有發(fā)生了翻天覆地的變化,其精度和生產(chǎn)效率變得越來 越高,特點(diǎn)也越發(fā)明顯,同時使用也是比較方便。
機(jī)床開發(fā)有兩個基本方向,一個是需要不斷提高生產(chǎn)率,另外一個是提高自身自動 化程度。近期,機(jī)床行業(yè)設(shè)計(jì)開發(fā)走向了新趨勢,一種無人手動操作的機(jī)床發(fā)展迅猛, 它是通過人員事先編制好的程序,通過程序自動走完整個加工周期,比人員手動操作方 便靈活了許多,節(jié)約了用人成本。此種趨勢的明顯奠定了未來機(jī)床的發(fā)展方向。
1.2 國內(nèi)機(jī)床與國外機(jī)床的差距
國內(nèi)機(jī)床行業(yè)由于國內(nèi)政策的放寬從而有所進(jìn)步,但是從加工能力和精度來講,還 與世界先進(jìn)的生產(chǎn)水平和能力相比,有一定的差距。主要針對以下幾個方面的不足:多 部分精度高的和超高精密的機(jī)械性能好的機(jī)床由于制造,精密穩(wěn)定性差不足以滿足使用 要求,尤其是高效的自動化生產(chǎn)和批量的生產(chǎn)的一致性,其技術(shù)水平和質(zhì)量要明顯落后 西方。在中國常用的機(jī)床基本上屬于上中型車床,高精度的機(jī)床一般來與進(jìn)口,所以國 內(nèi)對各種類型的機(jī)床的需求量較大。多種行業(yè)包括特殊軍工等行業(yè)也都需要各種類型的 專用精度高的機(jī)床,但有些目前依然是空白。
在技術(shù)層面上,整機(jī)性能差距也非常明顯,據(jù)資料顯示目前國外高性能機(jī)床可以實(shí) 現(xiàn) 15-19 軸聯(lián)動,可實(shí)現(xiàn)分辨率 0.01 微米,而中國制造的目前的水平只能做到了 5-6 軸
的聯(lián)動,且分辨率只有 1 微米。所以說目前看國產(chǎn)產(chǎn)品的質(zhì)量和可靠性還不夠穩(wěn)定,特別是在先進(jìn)的數(shù)控系統(tǒng)研發(fā)方向也需要進(jìn)一步的努力且需取得長足的進(jìn)步發(fā)展。為此, 中國機(jī)床行業(yè)人才短缺,必須不斷拓展整體行業(yè)的技術(shù)層次的隊(duì)伍,整體提高人員技術(shù) 素質(zhì),通過學(xué)習(xí)和引進(jìn)國外的先進(jìn)科技,才能制勝,只有大力多方面開展科學(xué)方面研究, 才能趕上世界先進(jìn)的水平。
產(chǎn)品水平上,國產(chǎn)數(shù)控金切機(jī)床與國外同類機(jī)床相比存有一定差距。加工中心與國 外產(chǎn)品相比,差距主要在機(jī)床的高速、高效和精密上。對于高速加工中心,國外機(jī)床在 進(jìn)給驅(qū)動上,滾珠絲杠驅(qū)動加工中心快速進(jìn)給大多在 40m/min 以上,最高已達(dá) 90m/min. 直線電機(jī)驅(qū)動的加工中心已實(shí)用化,應(yīng)用范圍不斷擴(kuò)大。國內(nèi)加工中心快速進(jìn)給大多在30m/min 左右,個別達(dá)到 60m/min。直線電機(jī)驅(qū)動的加工中心僅試制出樣品,國外加工中心主軸轉(zhuǎn)速一般都在 12000~25000r/min。在結(jié)構(gòu)上都采用適應(yīng)于高速加工要求的獨(dú)特箱子中箱結(jié)構(gòu)或龍門式結(jié)構(gòu)。
1.3 C620 主要技術(shù)參數(shù)概述
C620 普通車床。具體參數(shù)如下表:
表 1-1 C620 普通車床參數(shù)
項(xiàng)目
參數(shù)
工件最大回轉(zhuǎn)直徑
在床面上
400 毫米
在床鞍上
210 毫米
工件最大加工長度
1400 或 1900 毫米
主軸轉(zhuǎn)速范圍
正轉(zhuǎn)(21 級)
11.5~1200 轉(zhuǎn)/分
反轉(zhuǎn)(12 級)
18~1520 轉(zhuǎn)/分
主軸孔徑
41 毫米
主軸前端孔錐度
莫氏 5 號
加工螺紋范圍
公制(19 種)
1~192 毫米
英制(20 種)
2~24 牙/英寸
模數(shù)
0.5~48 毫米
徑節(jié)
1~96 徑節(jié)
進(jìn)給量范圍
縱向
0.08~1.59 毫米/轉(zhuǎn)
橫向
0.027~0.52 毫米/轉(zhuǎn)
主電機(jī)
功率
7.5 千瓦
轉(zhuǎn)速
1440 轉(zhuǎn)/分
冷卻泵電機(jī)
功率
0.125 千瓦
轉(zhuǎn)速
2850 轉(zhuǎn)/分
機(jī)床外形尺寸
(中心距離 1400 毫米)
長*寬*高
3049*1513*1210 毫米
2. C620 傳動系統(tǒng)設(shè)計(jì)
2.1 確定傳動系統(tǒng)圖
圖 2-1 C620 傳動系統(tǒng)圖
圖 2-1 為 C620 傳動系統(tǒng)圖,由電動機(jī)提供動力,通過皮帶輪帶動床頭箱傳動軸經(jīng)過一系列的變速運(yùn)動并由此帶動床頭箱各主軸進(jìn)行正反兩種不同轉(zhuǎn)速的運(yùn)動,獲得 21 級轉(zhuǎn)速。通過齒輪將動力傳遞給進(jìn)給箱,進(jìn)給箱可改變基本組螺紋螺距的倍數(shù),也可帶 動刀架溜板從而進(jìn)行一般車削加工等工作,溜板箱通過ⅩⅤ軸與進(jìn)給箱配合實(shí)現(xiàn)刀架的 橫向與縱向進(jìn)給,同時在切削過載與刀架溜板受阻時可通過離合器了讓蝸桿和蝸輪脫開 起到保護(hù)作用。
2.2 確定主電機(jī)功率
已知:主軸轉(zhuǎn)速 nmin = 11.5 轉(zhuǎn)/分, nmax = 1200 轉(zhuǎn)/分。主軸轉(zhuǎn)速級數(shù)Z=21
由功率算法, a p = 3.5 ,f=0.35
主切削力 Fz=1900aPf0.75N (2-1)
=1900′3.5′ 0.350.75
=3026.06N
切 削 功 率 P 切 =
FZJ
61200
kW (2-2)
= 3026.06 ′ 90
61200
=4.45kW
估算重電機(jī)功率 P = P切
h總
= P切 Kw (2-3)
0.7
式中:
根據(jù)計(jì)算P=6.35kW
= 4.45 = 6.35Kw
0.7
根據(jù)我國生產(chǎn)的標(biāo)準(zhǔn)的 Y 系列的額定功率取如下;
采用Y 系列封閉式三相異步電動機(jī),型號為 Y-132M-4 型,具體參數(shù)如下:
額定功率: 7.5 KW 轉(zhuǎn)速: 1440 r/min
2.3 確定傳動組及各傳動組中傳動副的數(shù)目
1.主軸轉(zhuǎn)速級數(shù) Z 和公比j
nmin = 1200
轉(zhuǎn)速范圍 R= nmax
Φ= Z -1 R = 21-1 R = 1.26
11.5 =104.3 (2-4)
(2-5)
求出主軸轉(zhuǎn)速級數(shù) Z=22 級
22 = 2 ′ 3 ′ 2 ′ 2
2.4 分配總降速比
(1)總體降速傳動比為Un = nmin / nd = 11.5 /1440 = 7.986 ′10-3 ,
其中 nmin 為主軸的最低轉(zhuǎn)速,一般情況下采用標(biāo)準(zhǔn)轉(zhuǎn)速序列,使用標(biāo)準(zhǔn)轉(zhuǎn)速得到的減速比可以直接減少齒輪的外形尺寸,進(jìn)而得到更大的空間。
由“先緩后急”的遞減后逐一分配給各個變速組。
(2)傳動軸的軸數(shù)的計(jì)算
傳動軸數(shù)目=變速的組數(shù)+定比傳動副的數(shù)目+1=6
2.5 皮帶直徑和齒輪齒數(shù)的確定以及轉(zhuǎn)速圖的確定
2.5.1 確定皮帶輪直徑
(1) 選擇三角帶的型號Ni=KwNd
K—工作情況系數(shù)Nd—電機(jī)額定功率
車床工作載荷時穩(wěn)定的,取 Nd=1.1
Nj=7.5 ′ 1.1=8.25kw
(2) 帶輪直徑 D1D2
計(jì)算小帶輪直徑 D1,選取小帶輪直徑 D1 不能過小, 其要大于許用值,所以
Dmin=130, D1 3 Dmin D1 由表得取 260mm
大帶輪計(jì)算直徑 D2
通過傳動比 u 和滑動率 ε 確定 D 大。降速帶傳動時:
D 大=D 小
′ 1 ′ (1 - e )
m
n1 D(1 - e ) = 1 D(1 - e )
(2-6)
或 D 大= n2 i
式中:n1——小帶輪轉(zhuǎn)速 r/min n2——大帶輪轉(zhuǎn)速 r/min
(2-7)
ε ——帶的滑動系數(shù),一般取 0.02
取D2=260mm
三角膠帶的滑動率e =2%
2.5.2 確定齒輪齒數(shù)
齒輪齒數(shù)的確定應(yīng)該注意以下幾點(diǎn):
1) 選取的齒輪的齒數(shù)應(yīng)取小一些以便縮小中心距降低機(jī)床機(jī)構(gòu)體積 ,一般選取的齒輪數(shù)為 60~100;
2) 不產(chǎn)生根切最小齒輪 Zmin 18~20;
3) 為了保證強(qiáng)度和防止熱處理變形過,大齒輪的齒根圓到鍵槽的壁厚一般取為
2mm。
2.6 轉(zhuǎn)速圖擬定
圖 2-2 C620 機(jī)床主傳動系統(tǒng)的轉(zhuǎn)速圖
圖 2-2 為 C620 的主傳動系統(tǒng)的轉(zhuǎn)速圖,主要反映了主軸箱內(nèi)各軸之間的相互傳動比,根據(jù)此圖對后續(xù)一系列主軸箱的軸和齒輪進(jìn)行相關(guān)計(jì)算。
3. C620 機(jī)床床頭箱結(jié)構(gòu)設(shè)計(jì)
3.1 總體結(jié)構(gòu)
圖 3-1 C620 床頭箱裝配圖
圖 3-1 為C620 床頭箱裝配圖,由平行的六根軸相互傳動從而實(shí)現(xiàn) 21 級轉(zhuǎn)速。主傳動系統(tǒng)的工作過程是由電機(jī)經(jīng) V 帶傳動傳至主軸箱中的軸 I,軸 I 上裝有雙向多片式的
摩擦離合器M1,M1 的作用是通過其離合來實(shí)現(xiàn)主軸正傳、反轉(zhuǎn)或停止。在傳動軸 I,III, IV 上都裝有用于變速的滑移齒輪,同時主軸 VI 上也裝有離合器 M2,它主要用于控制主軸獲得高速檔或低速檔的轉(zhuǎn)速。當(dāng)離合器 M2 左移,電動機(jī)經(jīng) V 帶輪傳給軸 I,由 M1 帶動的齒輪傳至 II 軸和 III 軸上的相關(guān)的傳動齒輪,最后直接傳動主軸 VI,從而獲得六級的高速。操作控制是由手柄通過偏心滑塊,用凸輪以及連桿機(jī)構(gòu)進(jìn)行控制變速,當(dāng) M2 右移合時,此時運(yùn)動由軸 III 經(jīng)軸IV 上的兩個雙聯(lián)滑移齒輪傳遞給軸 V,之后再傳至主軸 VI,從而獲得 18 級低速,由于高速和低速間的三級轉(zhuǎn)速是近似的,所以該機(jī)床主軸只有 21 級轉(zhuǎn)速。
3.2 箱體尺寸設(shè)計(jì)
箱體材料采用強(qiáng)度為中等強(qiáng)度的灰色鑄鐵的比較多,一般選擇灰鑄鐵 HT150 及HT200,本課題選用的材料為 HT200 材料.箱體在鑄造加工過程時的最小壁厚需要根據(jù)其整體外形輪廓尺寸(長×寬×高)確定,一般根據(jù)輪廓尺寸表 3-1 來選取。
表 3-1 輪廓尺寸
外形尺寸:長×寬×高( mm3 )
壁厚尺寸(mm)
小于 500 × 500 × 300
8-12
大于 500 × 500 × 300-800 × 500 × 500
10-15
大于 800 × 800 × 500
12-20
為了補(bǔ)充箱中孔洞所造成的剛度的不足,采用部位加凸臺和加強(qiáng)筋的辦法或者增加 壁厚。經(jīng)驗(yàn)表明,中型車床前部支撐墻一般需要 25mm 左右,后部支撐墻厚約 22mm 左右, 軸承孔上的凸臺同時也要滿足軸承安裝時調(diào)整的需要。
箱體主要用于支撐和定位各傳動部件。軸的定位取決于在箱體上空的部位,為了保 持精度,安裝孔的部位要確保其精度及公差。 該設(shè)計(jì)中要考慮每個軸安裝孔主要考慮齒輪嚙合與相互干擾,需要根據(jù)中心距離和每對齒輪的位移系數(shù)及相關(guān)信息來確定和設(shè) 計(jì)。
3.3 軸Ⅰ設(shè)計(jì)計(jì)算
圖 3-2 軸I 裝配結(jié)構(gòu)示意圖
圖 3-2 為軸Ⅰ裝配示意圖,由主軸、V 皮帶輪、密封氈、軸承 6208、擋圈、雙聯(lián)齒輪、離合器與元寶銷組成,主要作用為傳遞電動機(jī)通過皮帶傳遞過來的動力并在離合器 M2 左移和上時將電動機(jī)的動力傳遞給Ⅱ軸和Ⅲ軸的齒輪從而傳遞給主軸Ⅵ來獲得六級高速。
3.3.1 I 軸軸徑的初步估算
已知: i0
= i帶
= 260
130
n1
轉(zhuǎn)速:
= nd
i0
= 1450
260 /130
= 725(r / min)
根據(jù)參考文獻(xiàn)[3] 取效率:h01 = hV 帶 = 0.96
則功率: P1 = Pd ·h01 = 7.5′ 0.96 = 7.2 (kw)
根據(jù)參考文獻(xiàn)[3] 計(jì)算軸徑公式:
P
d = (100 ~ 120) 3
nc
P
(3-1)
d 3 1053
取 nc
d1 3 1053
得出
p1 = 105′ 3
n1
7.2
725
= 31.5mm
3.3.2 I 軸的校核
主軸箱體里的I 軸屬于傳動軸,不承載重載荷,所以本次設(shè)計(jì)只校核該傳動軸的剛度。而該軸的危險截面在花鍵處,故只需要校核花鍵。
計(jì)算花鍵軸的抗彎斷面慣性矩( mm4 )
p d 4 + b ′ N (D - d )(D + d )2
I =
花鍵軸
64
(3-2)
=
3.14′ 404 + 6′ 8(50 - 40)′(50 + 40)2
64
= 7.42′104 mm2
式中d 為花鍵軸的小徑 40(mm);
D 為花軸的大徑 50(mm);
b、N 分別為花鍵軸鍵寬 6,鍵數(shù) 8; 計(jì)算危險斷面上的最大扭矩:
扭
M = 955′104
P1 (N · mm) n1
955′104 ′
=
7.2
819.565
? 8.39′104
(Nmm) (3-3)
式中P1=7.2KW,I 軸所傳遞的最大功率;
n1 =819.565,I 軸最小轉(zhuǎn)速(r/min)。
經(jīng)分析加載在傳動軸上的彎矩載荷有三種:徑向力 Pr ,輸入和輸出扭矩齒輪的圓周力、以及齒輪的圓周力 Pt :
Pt =
2M 扭
D
= 2′ 8.39′104
56
? 2.996′103
N
D 為齒輪節(jié)圓直徑 56(mm)
Pr = Pt · tg(a + r) / cosb(N ) 式中 α 為齒輪的嚙合角,取α =20o;
ρ 為齒面摩擦角,取r ? 5.72° ;
β 為齒輪的螺旋角;直齒齒輪所以取β =0
P ? 0.5P = 1.498′103
帶入數(shù)據(jù)得出: r t (N)
根據(jù)參考文獻(xiàn)擠壓應(yīng)力計(jì)算公式為:
s jy =
8Mn max
(D2 - d 2 )lNK
£ é?s
jy ù? ,
(MPa) (3-4)
式中 Mn max 為花鍵傳遞的最大轉(zhuǎn)矩( N · mm );
D 為花鍵軸的大徑值
d 為小徑值(mm)
L 為花鍵軸工作長度(mm);
N 為花鍵的鍵數(shù)量;
K 為載荷分布不均勻系數(shù),一般取 K=0.7~0.8;
s = 8′8.39′104
? £ és ù =
jy
帶入數(shù)據(jù)得出:
(382 - 32.22 ) ′85′ 6′ 0.7
4.62MPa
? jy ?
20
(MPa)
所以該花鍵合格。
3.4 V 帶輪的設(shè)計(jì)計(jì)算
1)計(jì)算V 帶傳動功率
pca
pca
= kA ′ P (3-5)
根據(jù)參考文獻(xiàn)[4],取 kA =1.1 已知 P =7.5 kw
計(jì)算得
pca
= kA ′ P =7.5 ′ 1.1 = 8.25 (kw)
2)V 帶的選型
由上式計(jì)算
pca
=8.25KW 且小帶輪的轉(zhuǎn)速為 n1 = 1450 r/min,
根據(jù)參考文獻(xiàn)[4],選取該傳動V 帶的帶型為A 型
3)算出帶輪的基準(zhǔn)直徑 dd ,之后驗(yàn)算帶速V
(1)根據(jù)參考資料[4]選取小帶輪的基準(zhǔn)直徑 dd 1
已知帶型為 A 型,根據(jù)參考文獻(xiàn)[3]選取小帶輪的的基準(zhǔn)直徑 dd 1 ,取 dd 1 =132mm, 取整后成 dd 1 =130(mm)
(2)驗(yàn)算帶速V 值
V = p dd1n1 = 3.14′130′1450 = 10.0166
取整得V =10m/s
60′1000 60′1000
(3-6)
(3)計(jì)算查取大帶輪的基準(zhǔn)直徑
根據(jù)圖 2.2,帶輪傳動比為i = 2 , d d1 = 130 (mm)所以: dd 2 = 260 (mm) 4)計(jì)算中心距a,進(jìn)行V 帶的基準(zhǔn)長度 Ld 的選擇
(1)結(jié)合帶傳動的限制條件和其對中心距的要求,根據(jù)參考文獻(xiàn)[4]確定中心距
a0
0.7(dd1 + dd 2 ) £ a0 £ 2(dd1 + dd 2 )
即 0.7′ 360 £ a0 £ 2′ 360 選取中心距 a0 =450(mm)
(2)計(jì)算帶長 Ld 0
Ld 0
? 2a0
+ p (d
2 d1
+ dd 2
) + (dd 2 - dd1 ) (3-7)
4a
2
2′ 450 + p(130 + 260)+
=
0
(130 + 260)2
4′ 450
= 1596.8
(mm)
園整且根據(jù)參考文獻(xiàn)[4]標(biāo)準(zhǔn)值選取 Ld =1600 (mm)
(3)計(jì)算實(shí)際中心距 a 及可變化范圍
傳動的實(shí)際中心距可由下列公式計(jì)算
a ? a
+ Ld - Ld 0
2
0
(3-8)
= 450 + 1600 -1596.8 = 451.6 (mm)
2
帶輪在制造過程中存在制造誤差,存在一定的帶長誤差和帶還具有一定的彈性變 形,所以帶的松緊等尺寸變化都會影響傳動,所以需要計(jì)算中心距的可變化范圍:
amin = a - 0.015Ld =451.6-0.015′ 1600=427.6(mm) amax = a + 0.03Ld =427.6+0.03 ′ 1600=475.6(mm) 5)小帶輪包角a1
a1 ?
d 2
1800 - (d -
dd1 )
57.30 3
a
900
(3-9)
= 0 57.30 0 0
180
-100′ = 169
514.5
3 90
根據(jù)文獻(xiàn)公式計(jì)算帶的根數(shù) Z
Z = Pca
Pr
= K A ·P
(P0 + DP0 )Ka · KL (3-10)
查參考文獻(xiàn)[4]選取 K A =1.1, P0 =1.94, DP0 =0.15, Ka =0.98, KL =0.99
Z =
所以得出
7.5′1.1
(1.94 + 0.15) ′ 0.98′ 0.99
= 4.067
取整 Z =4(根) 7)初拉力 F0 計(jì)算
參考文獻(xiàn)[4]最小初拉力計(jì)算公式為:
( F )
= 500′ (2.5 - Ka ) · Pca + QV 2
0 min
Ka - Z ·V
(3-11)
= 500′ (2.5 - 0.98) ·1.1′ 7.5 + 0.1′102
0.98 - 5 ·10
8)帶傳動的壓軸力 FP 的計(jì)算據(jù)參考文獻(xiàn)[4]:
=137.595(N)
F = 2ZF sin a1 = 2′ 5′(F )
′sin 169 = 1373.2386
P 0 2
0 min 2
(N) (3-12)
3.5 多片式摩擦離合器的選型和計(jì)算
圖 3-3 多片式摩擦離合器結(jié)構(gòu)
圖 3-3 為多片式摩擦離合器結(jié)構(gòu)圖,該結(jié)構(gòu)用于控制主軸的正反轉(zhuǎn)運(yùn)動,負(fù)責(zé)控制軸Ⅰ的動力方向。同時也具有和軸Ⅳ上的制動齒輪互鎖從而達(dá)到剎車的作用。由于離合 器也在軸上很容易影響軸與軸之間的配合,進(jìn)而影響整個機(jī)床的設(shè)計(jì)。故選擇離合器的 時候尺寸非常重要。
計(jì)算摩擦片的級數(shù):
Z 3 2TK
p fD0b[P] (3-13)
Nd 為主軸電機(jī)的額定功率(kw)
T = 955′104 N h / n = 955′104 ′ 7.5′ 0.98 / 819.565 = 8.56′104
d j (Nmm) (3-14)
nj 為I 軸的計(jì)算轉(zhuǎn)速(r/min)
h 為從電機(jī)到I 軸的傳動效率大小K 為安全系數(shù),K=1.3
f 為摩擦片間的摩擦系數(shù)的大小,淬火鋼材質(zhì)的摩擦片 f=0.08
Dm 為多片摩擦片的平均直徑的大?。╩m)
Dm = (D + d ) / 2 = (81+ 39) / 2 = 60 mm (3-15) b 為內(nèi)外摩擦片的接觸寬度的大小(mm)
b = (D - d ) / 2 = (81- 39) / 2 = 23 mm (3-16)
[P ] 為摩擦片的允許許用壓強(qiáng)(單位 N / mm2 )
[P0 ] 為基本允許許用壓強(qiáng),查資料,取 1.1
K1 為速度修正系數(shù)
[ p] = [ p0 ]K1K3 K2 = 1.1′1.00 ′1.00 ′ 0.76 = 0.836 (3-17)
0
p
v = p D2n / 6′104 = 2.5
(m/s) (3-18)
根據(jù)資料表對平均圓周速度 vp 取值
K1 =1.00 K2 取 0.76 K3 取 1.00
所以
0
Z 3 2MnK / p fD2b[ p] = 2 ′8.56′104 ′1.4 / (3.14′ 0.08′ 602 ′ 21′ 0.836) = 15.097
取整 Z = 16
3.6 軸Ⅱ設(shè)計(jì)計(jì)算
圖 3-4 軸II 裝配結(jié)構(gòu)示意圖
圖 3-4 為軸Ⅱ裝配結(jié)構(gòu)示意圖,由四個齒輪與部分軸承及一根主軸組成,主要作用為傳遞Ⅰ軸傳遞過來的動力并將動力傳遞給Ⅲ軸而后直接傳動主軸Ⅵ,從而獲得六級高 速。
3.6.1 Ⅱ軸軸徑初步估算
i12
已知:
n
= 51
39
= n1 = 819.565 = 630.4
2
轉(zhuǎn)速:
i12 1.3
(r/min)
n` = n1 = 819.565 = 315(r / min)
?
i
2
2 ` 52 / 20
根據(jù)參考文獻(xiàn)[3] 取效率
角接觸球軸承效率h1 =0.96 ,直齒圓柱齒輪效率h2 =0.98
P = P ·h = 7.2′ 0.992 ′ 0.98 = 6.9156
2 1 12
(kw)
根據(jù)參考文獻(xiàn)[3] 計(jì)算軸徑公式:
d2 3 105′ 3
p2 = 1053
n2
6.9156 =
315
17.85
∴ 取d2min 3 22 (mm)
3.6.2 II 軸的校核
主軸箱體里的 II 軸屬于傳動軸,不承載重載荷,所以本次設(shè)計(jì)只校核該傳動軸的剛度。而該軸的危險截面在花鍵處,所以校核花鍵軸部分即可。
計(jì)算花鍵軸的抗彎斷面慣性矩( mm4 )
p d 4 + b · N (D - d )(D + d )2
I =
64
p ′ 324 + 6′8′(36 - 32) ′(36 + 32)2 =
64
6.534′10
4 mm4
式中
D 和d 為花鍵軸的大徑值和小徑值(mm)
b 為花鍵鍵寬(mm);
N 為 花 鍵 鍵 數(shù) 量 ; 校核危險斷面上的最大扭矩:
扭
M = 955′104 P2
n2
955′104 ′
=
6.9156
969.670
= 6.81′104
(Nmm)
式中P2 為該軸所傳遞的最大功率值(kw);
n2 為該軸的計(jì)算最小轉(zhuǎn)速(r/min)。
存在于傳動軸上的彎矩載荷有三種:輸入和輸出扭矩齒輪的圓周力、徑向力 Pr 以及齒輪的圓周力 Pt :
2M 2′ 6.81′104 3
P = ?扭 = = 2.724′10
(N)
t D 50
D 為齒輪節(jié)圓直徑 50(mm)
Pr = Pt · tg(a + r) / cosb(N ) (3-19) 式中 α 為齒輪的嚙合角,取α =20o;
ρ 為齒面摩擦角,取r ? 5.72° ;
β 為齒輪的螺旋角;直齒齒輪所以取β =0 帶入數(shù)據(jù)得出: Pr = 902 N
根據(jù)參考文獻(xiàn)擠壓應(yīng)力計(jì)算公式為:
s jy =
8Mn max
(D2 - d 2 )lNK
£ é?s
jy ù? ,
(MPa) (3-20)
式中 Mn max 為花鍵傳遞的最大轉(zhuǎn)矩( N · mm );
D 和d 為花鍵軸的大徑值和小徑值(mm)
L 為花鍵工作長度(mm);
N 為花鍵鍵數(shù)量;
K 為載荷分布不均勻系數(shù),一般取 K=0.7~0.8;
s = 8′ 6.81′104
= £ és ù =
jy (362 - 322 ) ′116′8′ 0.7
3.08MPa
? jy ?
20
(MPa)
所以該花鍵校核后合格。
3.6.3 軸承的校核
根據(jù)尺寸等實(shí)際軸徑要求,軸 II 選擇的軸承為圓錐滾子軸承 32304 (1 對)
106 ? f f f ?e
L10h
= ? h m d ÷
可根據(jù)I 軸軸承計(jì)算公式:
60n è
fn fT
? 計(jì)算校核該軸承
對軸II 上的圓錐滾子軸承的校核并帶入相關(guān)參數(shù)如下:
10
106 ? 3.48′ 2 ′1.5 ? 3 5
L10h = 60 ′1207.78 ?
0.363′1 ÷
= 9.95′10
è ? (h) 所得數(shù)據(jù) L10h > [T ] 所以軸II 上的軸承校核符合要求。
3.6.4 部分齒輪的校核
根據(jù)據(jù)參考文獻(xiàn)[4]齒輪的校核公式:
KFt <
[s F ]
F = 2T
bm YFaYSa , t d
對II 軸上齒數(shù)為 28 模數(shù)為 2.25 的的齒輪進(jìn)行校核
2T 2 ′ 6.75′104
Ft = d =
86
KF 1.869′ 2′ 0.675′ 105
t = = 17.060
帶入數(shù)據(jù)得
bm
[s F ]
86′ 86′ 2
= ?303.57 = 76.152
計(jì)算齒輪的: YFaYSa
2.37′1.682
KFt < [s F ]
二者進(jìn)行比較得出:
bm YFaYSa
所以該齒輪相關(guān)參數(shù)數(shù)據(jù)尺寸合格。
經(jīng)過計(jì)算和校核,在軸 II 上齒數(shù)為 28,模數(shù)為 2.25 的齒輪相關(guān)參數(shù)數(shù)據(jù)尺寸合格。
4. C620
4.1 總體結(jié)構(gòu)
圖 4-1 為C620 進(jìn)給箱裝配圖,主要由移換機(jī)構(gòu)、增倍機(jī)構(gòu)與擺移塔齒輪機(jī)構(gòu)組成, 配有多個手柄以便完成內(nèi)部齒輪的變化配合。操縱手柄經(jīng)過撥叉調(diào)整齒輪從而變換螺紋 種類。通過操縱手柄來移動擺移塔齒輪機(jī)構(gòu)中的擺移齒輪,從而改變基本組螺距的大小。 手柄移動上下兩組雙聯(lián)滑移齒輪從而海邊基本組螺紋螺距的倍數(shù)。
圖 4-1 C620 進(jìn)給箱裝配圖
手柄控制齒輪的移動,當(dāng)齒輪右移與M5 嚙合時,進(jìn)給箱的運(yùn)動傳給絲杠,帶動刀架溜板進(jìn)行螺紋加工,如果左移和 Z=56 的齒輪嚙合,將進(jìn)給箱運(yùn)動傳給光桿而帶動刀架溜板,進(jìn)行一般車削加工。若閉合離合器 M3,M4 和 M5,主傳動經(jīng)掛輪可直接傳動絲杠,再改變掛輪的速度,即可加工特殊或精密螺距的螺紋。
4.2 軸ⅩⅢ的設(shè)計(jì)與校核
4.2.1 驗(yàn)算初選軸直徑
已知: i56
= 56
28
轉(zhuǎn)速: n13
= n14 i1314
= 22.988 = 11.494 (r/min) 2
根據(jù)參考文獻(xiàn)[3] 取效率圓錐滾子軸承效率h3 =0.98 直齒圓柱齒輪效率h2 =0.98
P = P ·h = 5.5901′ 0.982 ′ 0.98 = 5.261
6 5 56
kw
根據(jù)參考文獻(xiàn)[3] 計(jì)算軸徑公式:
d13 3 105′ 3
p13 n13
= 1053
5.261
11.5
= 23.8 (mm) 取 d13 min 3 24 (mm)
4.2.2 傳動軸ⅩⅢ的花鍵校核
進(jìn)給箱體里的ⅩⅢ軸屬于傳動軸,不承載重載荷,所以本次設(shè)計(jì)只校核該傳動軸的 剛度。而該軸的危險截面在花鍵處,所以校核花鍵軸部分即可。
計(jì)算花鍵軸的抗彎斷面慣性矩( mm4 )
p d 4 + b · N (D - d )(D + d )2
I =
64
p ′ 264 + 6′ 6′(32 - 26)(32 + 26)2
= 64
= 3.377 ′10
4 mm4
式中
D 花鍵軸的大徑值;
d 為小徑值(mm);
b 為花鍵鍵寬(mm);
N 為花鍵鍵數(shù)量; 校核危險斷面上的最大扭矩:
M = 955′104 ′ P6
955′104 ′
5.261
= 4.87 ′106
n
扭
6 = 10.305
(Nmm)
式中 P6 為該軸所傳遞的最大功率值(kw);
N6 為該軸的計(jì)算最小轉(zhuǎn)速(r/min)。
存在于傳動軸上的彎矩載荷有三種:輸入和輸出扭矩齒輪的圓周力、徑向力 Pr 以及齒輪的圓周力 Pt :
P = 2M
′ ′ 6
2 4.87 10 5
扭(N)= = 1.52′10
t D 64
(N)
D 為齒輪節(jié)圓直 64(mm)
Pr = Pt · tg(a + r) / cosb(N ) (4-1) 式中 α 為齒輪的嚙合角,取α =20o;
ρ 為齒面摩擦角,取r ? 5.72° ;
β 為齒輪的螺旋角;直齒齒輪所以取β =0
帶入數(shù)據(jù)得出: Pr = Pt · tg(a + r) / cosb(N ) = 650 (N) 根據(jù)參考文獻(xiàn)擠壓應(yīng)力計(jì)算公式為:
s jy =
8Mn max
(D2 - d 2 )lNK
£ é?s
jy ù? ,
(MPa) (4-2)
式中 Mn max 為花鍵傳遞的最大轉(zhuǎn)矩( N · mm );
D 為花鍵軸的大徑值(mm);
d 為小徑值;
L 為花鍵工作長度(mm);
N 為花鍵鍵數(shù)量;
K 為載荷分布不均勻系數(shù),一般取 K=0.7~0.8;
s = 8′ 4.87 ′106
= £ és ù =
jy (322 - 262 ) ′116′8′ 0.7
17.23MPa
? jy ?
20
(MPa)
所以該花鍵校核后合格。
4.3 對ⅩⅢ軸齒輪的的設(shè)計(jì)與校核
1)初步選擇小齒輪的齒數(shù)為 Z 1 =28,齒輪精度等級為 7 級,根據(jù)傳動比則相嚙合的大齒輪齒數(shù)應(yīng)為 Z 2 =56
(1) 選取載荷系數(shù) Kt = 1.3
(2) 計(jì)算齒輪傳遞的扭矩T1 據(jù)參考文獻(xiàn)[4]
95.5′105 ′ P
T1 = n
其中:n=11.5r/min P = 5.261kw
T1 =
代入得出
95.5′105 ′ P
n
= 95.5′105 ′ 5.261
10.401
= 4.8305′106
(Nmm) (4-3)
(2)據(jù)參考文獻(xiàn)[4],取齒寬系數(shù)fd = 0.4 1
(3)據(jù)參考文獻(xiàn)[4],選取材料的彈性影響系數(shù) ZE = 189.8MPa 2 ,
(4)據(jù)參考文獻(xiàn)[4]得s lim1 = 600MPa , s lim 2 = 500MPa
(5)據(jù)參考文獻(xiàn)[4]應(yīng)計(jì)算力循環(huán)次數(shù):
N = 60n jL = 60′ 960′1′(2′8′ 300′15) = 4.147 ′109
1 1 h
N 4.147 ′109 9
N2 = 1 = = 1.296′10 3.2 3.2
(6)據(jù)參考文獻(xiàn)[4],取 KHN1 = 0.9 , KHN 2 = 0.95
(7)據(jù)參考文獻(xiàn)[4]式 10-12,計(jì)算接觸疲勞許用應(yīng)力的大小s H , 先取失效概率值為 1%,安全系數(shù)S=1,得:
[s ]
= KHN1s lim1 = 0.9′ 600 = 540
H 1 S 1
(MPa) (4-4)
[s ]
= KHN 2s lim 2 = 0.95′ 500 = 475
H 2 S
1 (MPa)
2)據(jù)參考文獻(xiàn)[4]計(jì)算小齒輪的分度圓直徑 d1t ,
2
KT u +1 ? Z ?
d = 2.32 ′ 3 t 1 · ·? ?E ÷
f
1t
d
代入[s H ] 2
u è [s H
] ? , (4-5)
得出:
d1t
= 2.32′
= 356.559
(mm)
(1) 計(jì)算齒輪的圓周速度 V:
V
據(jù)參考文獻(xiàn)[4]:
= p d1t n1
60′1000
V
即 圓周速度
= 3.14 ′ 356.559 ′10.401 = 0.194 60 ′1000
(r/min) (4-6)
(2)計(jì)算齒輪的齒寬b :
據(jù)參考文獻(xiàn)[4]:齒寬b = fd · d1t = 0.4′ 356.599 = 142.692 (mm) (4-7)
b
(3)計(jì)算齒寬高之比 h :
據(jù)參考文獻(xiàn)[4]:
Mt
齒輪模數(shù)
= d1t
Z1
= 356.559 = 14.857
24
齒高 h = 2.25Mt = 2.25′14.587 = 33.427 (mm)
b = 356.559 = 10.67
所以齒高比 h
33.427
(4-8)
(4)載荷系數(shù)的計(jì)算:
已知參數(shù):等級為 7 級精度的齒輪, V = 0.194m / s ,
據(jù)參考文獻(xiàn)[4]圖 10-8