發(fā)動機(jī)鏈傳動式配氣機(jī)構(gòu)設(shè)計(jì)【說明書+CAD+CATIA+仿真】
發(fā)動機(jī)鏈傳動式配氣機(jī)構(gòu)設(shè)計(jì)【說明書+CAD+CATIA+仿真】,說明書+CAD+CATIA+仿真,發(fā)動機(jī)鏈傳動式配氣機(jī)構(gòu)設(shè)計(jì)【說明書+CAD+CATIA+仿真】,發(fā)動機(jī),鏈傳動,式配氣,機(jī)構(gòu),設(shè)計(jì),說明書,仿單,cad,catia,仿真
一個新的和廣義的多級設(shè)計(jì)方法
通過整合維和齒輪傳動裝置配置設(shè)計(jì)過程
摘要
本文提出了一種新的和廣義的設(shè)計(jì)方法,支持設(shè)計(jì)師在初步設(shè)計(jì)階段的多級齒輪傳動。擬議的設(shè)計(jì)方法,設(shè)計(jì)過程自動化集成的三維設(shè)計(jì)和配置設(shè)計(jì)流程,在一個正式的算法。“算法包括四個步驟。在第一步中,用戶臨時設(shè)置的數(shù)量減少階段。在第二個步驟,每一個階段的齒輪比選擇使用指定的比例范圍內(nèi)的隨機(jī)搜索方法,比用在下一步的齒輪三維設(shè)計(jì)的基本輸入。在第三步中,齒輪的基本設(shè)計(jì)參數(shù)值選擇使用生成和測試方法。然后在最后一步的配置設(shè)計(jì)計(jì)算等設(shè)計(jì)參數(shù),如中徑值,外徑值。在最后一步,配置設(shè)計(jì)進(jìn)行了利用模擬退火算法。齒輪和軸的位置確定,同時滿足空間的限制,以減少變速箱的幾何量。這些步驟都進(jìn)行了反復(fù),直到獲得一個理想的解決方案。
1介紹
到現(xiàn)在為止,齒輪傳動設(shè)計(jì)的研究都集中在三維設(shè)計(jì)單級齒輪傳動。然而,近年來,需要設(shè)計(jì)的多級齒輪驅(qū)動已增加更多的齒輪傳動應(yīng)用在高速和狹小的空間。在設(shè)計(jì)多級齒輪傳動裝置,它不會出現(xiàn)在單級齒輪傳動裝置的設(shè)計(jì)應(yīng)考慮一些復(fù)雜的問題。首先,應(yīng)確定適當(dāng)數(shù)量的減少(增加)的階段,每個階段的齒輪比,在考慮總齒輪比,可用空間,以及其他的設(shè)計(jì)要求。沒有明確的規(guī)則已被提出,以確定它們。其次,將可用空間配置齒輪傳動部件(齒輪,軸,軸承,...)的問題也是主要的設(shè)計(jì)問題之一。小齒輪和齒輪相互嚙合齒輪之間,與其他機(jī)器元素,同時滿足空間限制。齒輪箱的體積或重量也是相當(dāng)?shù)呐渲煤桶才诺挠绊?。有幾個傳統(tǒng)的方法來估算齒輪大小齒輪標(biāo)準(zhǔn)組織或研究人員建議。然而,這些方法不考慮齒輪傳動要素的配置和安排,雖然它們的尺寸直接影響配置。設(shè)計(jì)者應(yīng)該已經(jīng)解決了上述問題,只有通過試驗(yàn)和錯誤的方法,在很大程度上取決于他的直覺感。因此,設(shè)計(jì)的做法是費(fèi)時,甚至為專家設(shè)計(jì)師,最后往往欠佳的設(shè)計(jì)方案。
本文的目標(biāo)是建立一個新的和廣義的設(shè)計(jì)方法,為多級圓柱齒輪傳動(直齒輪和斜齒輪傳動)。所提出的設(shè)計(jì)算法支持端口,在初步設(shè)計(jì)階段,設(shè)計(jì)師有效地整合和自動化維和配置的設(shè)計(jì)過程。
該算法包括以下四個步驟。在第一步中,設(shè)計(jì)者暫時減少階段的數(shù)量寫在考慮總齒輪比和其他設(shè)計(jì)要求設(shè)置。在第二個步驟,每一個階段的齒輪比決定采用隨機(jī)搜索方法,比使用作為泰德手冊所有提及的步驟齒輪三維設(shè)計(jì)的基本輸入。在第三步中,模塊,牙齒,臉的寬度的三個基本設(shè)計(jì)參數(shù),確定使用生成和測試方法。在初步設(shè)計(jì)階段,很可能要考慮三個基本設(shè)計(jì)參數(shù),其中有齒輪的整體規(guī)模上的顯性效應(yīng),因此配置設(shè)計(jì)。其他設(shè)計(jì)參數(shù),如壓力角,螺旋角,齒頂修正系數(shù),造成齒輪的整體規(guī)模相對較小的變化,一般都確定以后在齒輪設(shè)計(jì)過程的詳細(xì)設(shè)計(jì)階段。設(shè)計(jì)齒輪的強(qiáng)度和耐用性,彎曲強(qiáng)度和點(diǎn)蝕援助的做法是保證。在最后一步,確定齒輪的位置,以盡量減少使用模擬退火算法的齒輪箱的幾何量(大?。?,同時嚙合之間的齒輪和齒輪,齒輪和軸之間的干擾,避免正確。上述四個步驟進(jìn)行了反復(fù),直到獲得一個理想的設(shè)計(jì)方案。
該算法的多級齒輪傳動裝置的初步設(shè)計(jì)通過有效集成光柵的三維設(shè)計(jì)和配置設(shè)計(jì)流程自動化。將通過四個階段的齒輪傳動裝置的設(shè)計(jì)實(shí)例驗(yàn)證算法的可用性。
2擬議的設(shè)計(jì)算法
圖1顯示了算法初步設(shè)計(jì)階段的多級齒輪傳動自動化。如前所述,該算法由四個設(shè)計(jì)步驟,步驟都進(jìn)行了反復(fù),直到獲得一個理想的解決方案。
圖1 多級齒輪傳動裝置的設(shè)計(jì)流程圖
在第1步,設(shè)計(jì)師臨時設(shè)置的數(shù)量減少的階段,在考慮總齒輪比,可用空間,以及其他設(shè)計(jì)規(guī)范。提出幾個簡單的指南確定若干階段。在齒輪設(shè)計(jì)文本,建議處理的齒輪比從1:1到8:1(或10:1),在一個普通的鞭策和螺旋設(shè)計(jì)實(shí)踐[1]單減少。,艾格瑪建議增加另一個階段齒輪火車,如果一個階段的齒輪比大于5:1[2]。因此,設(shè)計(jì)人員可以從推薦比例范圍內(nèi)的數(shù)量減少階段作出明智的選擇。當(dāng)最后的設(shè)計(jì)方案是不理想或迭代超過最大數(shù)量,即設(shè)計(jì)被視為暫時沒有可行的解決方案,設(shè)計(jì)師可以決定選擇是否繼續(xù)與其他數(shù)量減少階段。這是相當(dāng)?shù)托У淖詣踊怂惴ㄋ惴ǖ牟襟E,因?yàn)殡A段的數(shù)量可以在一個相對小的范圍內(nèi)選擇。此外,自動縮混在大多數(shù)情況下,增加不必要的計(jì)算時間。
在第2步,每減少階段的齒輪比使用指定的比例范圍內(nèi)的隨機(jī)搜索方法確定。沒有明確的規(guī)則已被提出來確定齒輪比。尼曼等提出指導(dǎo)。[3]可能是一個切合實(shí)際的,在齒輪比率乃根據(jù)赫茲接觸應(yīng)力公式。然而,這種方法只限于兩個和三個階段的齒輪傳動裝置的設(shè)計(jì),設(shè)計(jì)者應(yīng)以前確定的牙齒或模塊的數(shù)量,以計(jì)算出每個階段[4,5]的齒輪比
我們提出了兩種類型的處所,以采用隨機(jī)搜索方法。首先,齒輪比可以被限制在一個合理的范圍內(nèi)。如前所述,這是合理的處理在一個普通的直齒輪和斜的設(shè)計(jì)實(shí)踐的單級減速齒輪比從1:1到8:1。甚至10:1的比率是可能的[1]。因此,齒輪比的上下限可設(shè)置為普遍接受的價值觀根據(jù)上述指南,雖然不知道他們的定值。其次,它是一般的首次減少階段比第二階段的齒輪比選擇一個更大的價值。以同樣的方式,第二減少階段的比例應(yīng)該有一個更大的價值比第三階段,等等。從這些樓宇的首次減少U 1階段以前由設(shè)計(jì)師指定的上限和下限之間的齒輪比,產(chǎn)生一個隨機(jī)值。從1:1到9:1的比例范圍內(nèi)已被用于在第4節(jié)設(shè)計(jì)的例子(見表2)減少階段。然后,第二減少階段U2的齒輪比可以選擇通過設(shè)置新的上限為第一階段的齒輪比。換句話說,另一個隨機(jī)值產(chǎn)生的第二階段之間的下限和先前確定的第一階段的傳動比的齒輪比。每減少階段Ui的齒輪比可以由上述同樣的方式確定。
雖然方法隨機(jī)選擇的齒輪比,每一個階段的齒輪比,最終應(yīng)當(dāng)有正確的價值觀。這可以從一個事實(shí),即有直接對應(yīng)關(guān)系間的齒輪比,齒輪的尺寸和配置,齒輪箱量驗(yàn)證。也就是說,影響齒輪傳動比齒輪的尺寸,齒輪的尺寸做他們的配置。齒輪的配置有直接影響變速箱的體積,這是明顯的。將這一事實(shí)清楚地表明在第4節(jié)的設(shè)計(jì)實(shí)例。
第三步,確定的基本設(shè)計(jì)參數(shù)的齒輪(模數(shù)m,齒數(shù)Z,面部寬度b)通過生成和測試方法。有幾個傳統(tǒng)的方法來估算齒輪大小齒輪標(biāo)準(zhǔn)組織或研究人員建議。例如,AGMA[2]提出了一種用于直齒輪和斜齒輪的初步設(shè)計(jì)過程的完整的指南,達(dá)德利[6]給出了一個估算齒輪大小的一般方法。然而,這些方法沒有考慮到齒輪傳動元素的配置和安排,雖然齒輪的配置直接影響到它們的尺寸。相反,提出[的算法集成的配置和齒輪三維設(shè)計(jì),要考慮它們之間的關(guān)系。
一旦確定了基本設(shè)計(jì)參數(shù)值,節(jié)圓直徑和外DI-直徑計(jì)算模塊和齒數(shù)配置設(shè)計(jì)。由于本文的目的是自動化的齒輪設(shè)計(jì)過程的初步階段,其他的設(shè)計(jì)變量,如壓力角,螺旋角,增編作案作用系數(shù),終止尚未考慮。這些設(shè)計(jì)變量導(dǎo)致相對較小的變化
一般在詳細(xì)設(shè)計(jì)階段確定的總體規(guī)模和齒輪。因此,有固定的變量值,在設(shè)計(jì)過程中。這是使使用三維設(shè)計(jì)的生成和測試方法的關(guān)鍵點(diǎn)之一,雖然在大多數(shù)情況下是不效率的方法。另一個關(guān)鍵的一點(diǎn)是,搜索時間的方法,可以限制的設(shè)計(jì)變量的搜索空間,大大減少了。首先,它是由標(biāo)準(zhǔn)組織推薦[7]使用模塊標(biāo)準(zhǔn)值,因此它可以作為一個離散變量處理。此外,上限和下限可根據(jù)齒輪傳動的應(yīng)用。其次,對牙齒的數(shù)量,顯然是一個整型變量。根據(jù)壓力角,可以指定對牙齒的齒輪數(shù)量的最低值,可以被限制在一個傳統(tǒng)的價值和它的最大價值。最后,假設(shè),臉的寬度由指定模塊的整數(shù)倍(面寬度因子),如常見的做法是,它可以被視為一個獨(dú)立的變量。它也可以指定上,它的下限,按照傳統(tǒng)的價值觀與應(yīng)用。
一旦確定了設(shè)計(jì)變量,那么實(shí)力評級的做法進(jìn)行了使用AGMA評級公式[8]的抗彎強(qiáng)度和耐點(diǎn)蝕性能評價測試的三維設(shè)計(jì)解決方案的有效性。如果齒輪不能滿足評級的做法,重新啟動的設(shè)計(jì),增加值從第2步的基本設(shè)計(jì)參數(shù)。因此,在步驟4中的配置設(shè)計(jì)進(jìn)行了只為滿足強(qiáng)度和耐久性的標(biāo)準(zhǔn)齒輪。
第四步,配置設(shè)計(jì)進(jìn)行了齒輪箱的體積,以盡量減少使用模擬退火算法。由于齒輪的外徑及面寬度已確定從先前的設(shè)計(jì)步驟,雖然值是臨時的,可能被視為構(gòu)造配置設(shè)計(jì)作為一個固定大小的齒輪,在三維空間中的包裝問題。已經(jīng)有一些研究,以解決三維包裝問題
使用優(yōu)化技術(shù)[9-11]。 Szykman和恰安[9,10],特別是使用模擬退火算法的固定大小的立體元素的最佳包裝問題報(bào)告顯著好成績。一個三維空間中的齒輪包裝的問題是傳統(tǒng)的基于梯度的優(yōu)化方法,由于其目標(biāo)函數(shù)空間中的不連續(xù)性和嚴(yán)重的非線性問題。模擬退火是適合的問題,因?yàn)樗橇汶A算法,無需衍生的信息,從而顯示連續(xù)性可以很容易地處理[12,13]
圖2 配置為一個齒輪傳動設(shè)計(jì)的模擬退火算法的流程圖。
圖2顯示了本文用于配置齒輪傳動設(shè)計(jì)的模擬退火算法的流程圖。從最初的隨機(jī)點(diǎn)開始,該算法需要一個步驟和功能進(jìn)行評估。當(dāng)最小化的功能,任何下坡的第一步是接受和重復(fù)這個過程,從這個新的起點(diǎn)。一場艱難的一步,可以接受。因此,它可以脫離局部最優(yōu)。這上山的決定是由大都市的標(biāo)準(zhǔn)。作為優(yōu)化過程中的收益,關(guān)閉步下降的長度和算法在全局最優(yōu)。
3配置設(shè)計(jì)的目標(biāo)函數(shù)的公式
配置設(shè)計(jì)的目標(biāo)函數(shù)F制定簡單的線性總和形成一個虛擬的變速箱的體積,即完全包圍的齒輪箱,和空間的限制,如式所示。 (1)
其中Wbox,Pbox是加權(quán)因子和一個虛擬的變速箱的體積為V框正常化的因素,分別為。Wi和P i是加權(quán)因素和正?;?,Ci為第i個約束因素。總數(shù)的限制是NC。正?;囊蛩豍box和皮的值是我的Vbox和C在當(dāng)前位置的最高值劃分,分別為空間的限制Ci應(yīng)滿足適當(dāng)配置齒輪傳動元素。包括四種類型的空間限制的制約;正確嚙合的小齒輪和齒輪的中心距離的限制,面對共同軸齒輪的交配距離的限制,齒輪干擾的限制,以避免齒輪之間的干擾,軸干擾約束避免齒輪和軸之間的干擾。為目標(biāo)函數(shù)F最小化,約束值趨近于零。
為了確認(rèn)式配置的設(shè)計(jì)算法的有效性。(1),六缸組態(tài)中已經(jīng)進(jìn)行了設(shè)計(jì)。氣瓶由三個10mm的直徑相同,20mm的三氣缸的氣缸。每個氣缸的高度為10mm。此配置是為三個階段減少齒輪傳動齒輪嚙合的比喻。
圖3顯示的6缸的最佳配置。全局最優(yōu)配置與圖3(a)在其邊界框有24000毫米的體積。圖3(b)顯示了另一種可能的配置,即局部最優(yōu),有24500毫米的體積。這種配置也可能會被視為一個良好的設(shè)計(jì),盡管它不是一個全局最優(yōu)。在例(2)--(13)找到適當(dāng)?shù)奈恢脷馄康募s束式.
圖3 六缸的優(yōu)化配置:(a)全局化配置;(b)局部的最佳配置。
坐標(biāo)(X,Y; Z)代表一個圓柱體的中心位置。汽缸的直徑和高度(面寬度)分別為D和B。在圖3中變量的下標(biāo)代表氣缸的數(shù)量。
根據(jù)氣缸之間的空間關(guān)系,上述限制可分為中心距離的限制和面部顯示距離限制。約束C1和C2代表在第一階段的氣瓶嚙合中心適當(dāng)距離的限制。這可能被視為嚙合的小齒輪和齒輪在齒輪傳動(見圖4)比喻。同樣,C3-C4和C5-C6分別為代表的第二中心距離的限制和第三個階段。從這些方程,該中心的距離約束等一般性的描述,可以得出如式所示(14)。
圖4 示意圖中心距離的限制。
其中n是總?cè)藬?shù)的階段。
C7?C9的約束代表的齒面距離限制在xy平面和z方向的2缸和3。這可能被視為共軸齒輪在齒輪傳動(見圖5)的嚙合關(guān)系相似。同樣,C10-C12代表缸4,5齒面距離的限制。 例(15)顯示一般的表示齒面距離的限制。
圖6顯示了配置設(shè)計(jì)使用的建議制定的結(jié)果之一。在這種情況下,加權(quán)因子的值被選為團(tuán)結(jié),以評估該算法的有效性。最終體積的包圍盒二四九六二立方毫米,功能評價的數(shù)是61201。相比在圖3的最優(yōu)配置,配置的結(jié)果是相當(dāng)不錯的。這表明,制定目標(biāo)函數(shù)與方程的模擬退火算法(1)可以用來有效地配置齒輪。
圖5 面對距離的限制示意圖
圖6 六缸配置的結(jié)果 a二維的代表性;b三維表示。
同時,配置設(shè)計(jì)為多級齒輪傳動的限制,還包括齒輪和軸之間的干擾限制。例如,顯示了三個階段的齒輪傳動的干擾限制在式(16) - (27)。在C13-C24的平等跡象意味著干擾約束,如果有一個值小于零,那么有沒有干擾和約束不包括在目標(biāo)函數(shù)。
坐標(biāo)(X,Y,Z)和(Xs,Ys,Zs)再分別代表齒輪和軸的中心位置。直徑do和ds分別代表了齒輪和軸的外徑。包括C13 - C16的限制,以避免齒輪之間的干擾. 例如,C14的手段,齒輪2和齒輪5之間的距離必須足夠大,以避免干擾它們之間的外徑。在圖7沒有配置的干擾,但在某些情況下,齒輪5可放置在底部的齒輪在z方向。在這種情況下,齒輪2和齒輪(見圖8)之間是有可能的干擾。此外,齒輪1和齒輪之間的干擾可能發(fā)生,如果在x方向齒輪1齒輪在齒輪2右邊(C13)。齒輪干擾的限制,可以在一般的算法表示,如式(28)。
圖7 三個階段的齒輪傳動的配置。
干擾距離
圖8 齒輪2和齒輪5間的相互干擾
同樣,17 - C24的代表齒輪和軸之間的干擾約束,其約束的意思與C13-C16的想同。方程(29)顯示軸的干擾限制的一般表示。
ns是軸的總數(shù)。
由于人數(shù)的限制,相當(dāng)一個階段的大量增加,這是效率低下且容易出錯的手動編寫程序。因此,一般陳述的約束,可方便地用于計(jì)算的目的。
4結(jié)論
已經(jīng)提出了一個新的和廣義的設(shè)計(jì)方法,以確定多級齒輪傳動的分析和系統(tǒng)設(shè)計(jì)的基本參數(shù)。該算法采用隨機(jī)搜索的方法來確定齒輪比例每減少階段,使用的齒輪三維設(shè)計(jì)的生成和測試方法。然后,配置設(shè)計(jì)進(jìn)行了利用模擬退火算法,以盡量減少變速箱的幾何量,同時滿足空間限制。作為設(shè)計(jì)算法所得,三維設(shè)計(jì)和配置設(shè)計(jì)迭代,直到最后得到最佳的解決方案。這個迭代過程自動化的實(shí)際設(shè)計(jì)過程中,三維設(shè)計(jì)和配置設(shè)計(jì)是高度耦合的特點(diǎn)。
該算法已應(yīng)用到四個階段的齒輪傳動裝置的設(shè)計(jì),和根在這兩個方面的尺寸和配置口糧設(shè)計(jì)相當(dāng)不錯的設(shè)計(jì)結(jié)果。從這些結(jié)果,我們可以得出這樣的結(jié)論所提出的設(shè)計(jì)方法,可以非常有助于設(shè)計(jì)師在初步設(shè)計(jì)階段,通過整合和自動化的三維設(shè)計(jì)和配置設(shè)計(jì)流程,在一個正式的算法。因此,在實(shí)際設(shè)計(jì)過程中的時間和成本將大大降低使用的設(shè)計(jì)方法。
有關(guān)工程正在進(jìn)行中,包括一般空間的限制,如輸入和輸出軸的位置,自動設(shè)計(jì)系統(tǒng),并擴(kuò)大了通用的多級齒輪傳動,蝸輪,傘齒輪和其他類型的組成齒輪傳動裝置。
參考資料
[1] D.P.湯森,達(dá)德利的齒輪手冊,麥格勞 - 希爾,紐約,1992年。
[2]艾格瑪917-B97標(biāo)準(zhǔn),細(xì)間距的平行軸傳動設(shè)計(jì)手冊,美國齒輪制造商協(xié)會,1997年。
[3]G.尼曼,H.冬季,機(jī)械元件,施普林格,柏林,1989年(在德國)。
[4] T.H.Chong,I.Bae,,使用模擬退火算法的多級齒輪傳動設(shè)計(jì)的一種新方法,PROC。DETC2000年,第八屆國際動力傳動與杠桿會議,2000
[5]T.H.Chong,I.Bae,S.J.Lee,發(fā)展為多級齒輪傳動設(shè)計(jì)系統(tǒng)(第一號報(bào)告:提案
正式程序的齒輪三維設(shè)計(jì)),國際精密工程2(2)(2001)57-64韓國社會的雜志。
[6] D.W.達(dá)德利,實(shí)用齒輪設(shè)計(jì),麥格勞 - 希爾,紐約,1984年的手冊。
[7] ISO標(biāo)準(zhǔn)54-1977,一般工程和重型機(jī)械用圓柱齒輪 - 模塊和針鋒相對的球場,國際標(biāo)準(zhǔn)化組織 1977
[8] ANSI / AGMA2101-C95標(biāo)準(zhǔn),基本評價因素和漸開線直齒輪和斜齒的計(jì)算方法,美國齒輪制造商協(xié)會,1995
[9] S. Szykman, J. Cagan,,一個模擬退火法為基礎(chǔ)的三維組件的包裝方法,國立交通大學(xué)機(jī)械設(shè)計(jì)117(3)(1995)308-314。
[10] S. Szykman, J. Cagan,,約束的三維組件布局,利用模擬退火,國立交通大學(xué)機(jī)械設(shè)計(jì)119(2)(1997)28-35。
[11] J.L. Udy, R.J. Balling, S.E. Benzley, M.D. Landon,計(jì)算三維物體和最佳的包裝問題,在工程軟件的進(jìn)展之間的干擾10 (1) (1998) 8–14.
[12] S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi,通過模擬退火優(yōu)化,科學(xué)220(4598)(1983)671-679。
[13] W. Goffe, G.D. Ferrier, J. Rodgers,統(tǒng)計(jì)函數(shù)的全局優(yōu)化模擬退火,計(jì)量經(jīng)濟(jì)學(xué)雜志60 (1/2) (1994) 65–100.
Anewandgeneralizedmethodologytodesignmulti-stage geardrivesbyintegratingthedimensionalandthe congurationdesignprocess TaeHyongChong * ,InhoBae,Gyung-JinPark DepartmentofMechanicalEngineering,HanyangUniversity,17HaengDang-Dong,SeongDong-Gu, Seoul133-791,SouthKorea Received24July2000;accepted3August2001 Abstract Thispaperproposesanewandgeneralizeddesignmethodologytosupportthedesigneratthepreliminary designphaseofmulti-stagegeardrives.Theproposeddesignmethodologyautomatesthedesignprocessby integratingthedimensionaldesignandthecongurationdesignprocessesinaformalizedalgorithm.The algorithmconsistsoffoursteps.Intherststep,theuserprovisionallysetsthenumberofreductionstages.In thesecondstep,gearratiosofeverystagearechosenbyusingtherandomsearchmethodwithinthespecied ratiorange,andtheratiosareusedasthebasicinputforthedimensionaldesignofgearsinthenextstep.Inthe thirdstep,thevaluesofthebasicdesignparametersofageararechosenbyusingthegenerateandtestmethod. Thenthevaluesofotherdesignparameters,suchaspitchdiameterandouterdiameter,arecalculatedforthe congurationdesigninthenalstep.Inthenalstep,thecongurationdesigniscarriedoutbyusingthe simulatedannealingalgorithm.Thepositionsofgearsandshaftsaredeterminedtominimizethegeometrical volumeofagearboxwhilesatisfyingspatialconstraints.Thesestepsarecarriedoutiterativelyuntilade- sirablesolutionisacquired. C211 2002ElsevierScienceLtd.Allrightsreserved. Keywords:Gear;Multi-stagegeardrives;Dimensionaldesign;Congurationdesign;Simulatedannealing;Generalized newdesignalgorithm 1. Introduction Until now, research on the design of gear drives has focused on the dimensional design of single-stagegeardrives.Inrecentyears,however,theneedfordesigningmulti-stagegeardrives hasbeenincreasedwithmoreapplicationsofthegeardrivesinhighspeedandsmallspace.A MechanismandMachineTheory37(2002)295310 * Correspondingauthor.Fax:+82-2-2296-4799. E-mailaddress:thchonghanyang.ac.kr(T.H.Chong). 0094-114X/02/$-seefrontmatter C211 2002ElsevierScienceLtd.Allrightsreserved. PII:S0094-114X(01)00078-7 numberofcomplicatedproblemsshouldbeconsideredinthedesignofmulti-stagegeardrives, which do not arise in the design of single-stage gear drives. Firstly, the number of reduction (increasing)stagesandthegearratioofeachstageshouldbedeterminedproperlyinconsideration of total gear ratio, available space, and other design requirements. No denite rule has been proposedtodeterminethem.Secondly,theproblemofconguringgeardriveelements(gears, shafts,bearings,.)intoavailablespaceisalsooneofthemajordesignproblems.Pinionsand gearsshouldmeshproperlywitheachotherwhilesatisfyingspatialconstraintsbetweengears,and betweenothermachineelements.Thevolumeorweightofagearboxisalsoconsiderablyaected bythecongurationandthearrangement.Thereareseveralconventionalmethodstoestimate gearsizesrecommendedbygearstandardsorganizationsorresearchers.However,thesemethods donottakethecongurationandthearrangementofthegeardriveelementsintoconsideration, althoughthedimensionsofthemaredirectlyaectedbytheconguration.Thedesignershould havesolvedtheaboveproblemsonlybyusingthetrialanderrormethod,largelydependedonhis intuitionalsense.Thus,thedesignpracticesaretime-consumingevenforexpertdesigners,and oftenendupwithunsatisfactorydesignsolutions. Theobjectiveofthispaperistodevelopanewandgeneralizeddesignmethodologyformulti- stagecylindricalgeardrives(spurandhelicalgeardrives).Theproposeddesignalgorithmsup- portsadesignereectivelyatthepreliminarydesign phaseby integratingandautomatingthe dimensionalandthecongurationdesignprocesses. Thealgorithmconsistsoffoursteps.Intherststep,thedesignerprovisionallysetsthenumber of reduction stages in consideration of total gear ratio and other design requirements. In the secondstep,thegearratiosofeverystagearedeterminedbyusingtherandomsearchmethod,and theratiosareusedasbasicinputforthedimensionaldesignofgearsinthethirdstep.Inthethird step,thethreebasicdesignparametersofmodule,numberofteeth,andfacewidtharedetermined byusingthegenerateandtestmethod.Inthepreliminarydesignphase,itispossibletoconsider onlythethreebasicdesignparameters,whichhavedominanteectsontheoverallsizeofagear, andconsequentlyonthecongurationdesign.Otherdesignparameters,suchaspressureangle, helixangle,addendummodicationcoecient,causerelativelysmallchangeintheoverallsizeof agear,andaregenerallydeterminedlaterinthedetaildesignphaseofageardesignprocess. Strengthanddurabilityofthedesignedgearisguaranteedbybendingstrengthandpittingre- sistanceratingpractices.Inthenalstep,thepositionsofthegearsaredeterminedtominimizethe geometricalvolume(size)ofagearboxbyusingthesimulatedannealingalgorithm,whilemeshing properlybetweenpinionsandgears,andavoidinginterferencesbetweengearsandshafts.The abovefourstepsarecarriedoutiterativelyuntiladesirabledesignsolutionisacquired. Thealgorithmautomatesthepreliminarydesignofmulti-stagegeardrivesbyecientlyinte- grating the dimensional design and the conguration design processes. The availability of the algorithmwillbevalidatedbydesignexamplesoffour-stagegeardrives. 2. The proposed design algorithm Fig.1showstheproposedalgorithmforautomatingthepreliminarydesignphaseofmulti- stagegeardrives.Asmentionedearlier,thealgorithmconsistsoffourdesignsteps,andthesteps arecarriedoutiterativelyuntiladesirablesolutionisacquired. 296 T.H.Chongetal./MechanismandMachineTheory37(2002)295310 InStep1,thedesignerprovisionallysetsthenumberofreductionstagesinconsiderationof totalgearratio,availablespace,andotherdesignspecications.Severalsimpleguideshavebeen proposedtodeterminethenumberofstages.Ingeardesigntexts,itisrecommendedtohandle gearratiosfrom1:1to8:1(or10:1)inasinglereductionforordinaryspurandhelicaldesign practices1.AGMArecommendsaddinganotherstagetothegeartrainifthegearratioofa stageisgreaterthan5:12.Thus,thedesignercanmakeasensiblechoiceforthenumberof reductionstagesfromtherecommendedratiorange.Whenthenaldesignsolutionisnotsat- isfactoryortheiterationexceedsthemaximumnumber,i.e.thedesignisregardedprovisionallyas havingnofeasiblesolution,thedesignercandecideoptionallywhetherornottoproceedwith anothernumberofreductionstages.Itisratherinecienttoautomatethisstepintothealgo- rithm,sincethenumberofstagescanbeselectedinarelativelysmallrange.Moreover,theau- tomationunnecessarilyincreasescomputationtimeinmostcases. In Step 2, the gear ratios of each reduction stage are determined using the random search methodwithinthespeciedratiorange.Nodeniterulehasbeenproposedtodeterminethegear ratios.TheguideproposedbyNiemannetal.3mightbeapracticalone,inwhichgearratiosare determinedbasedontheHertzcontactstressformula.However,thismethodislimitedtothe design of two- and three-stage gear drives, and the designer should previously determine the numberofteethormoduleinordertocalculatethegearratiosofeachstage4,5. We have proposed two types of premises in order to employ the random search method. Firstly,gearratioscanbelimitedtoareasonablerange.Asmentionedearlier,itisreasonable tohandlegearratiosfrom1:1to8:1inasinglereductioninordinaryspurandhelicaldesign Fig. 1.Flowchartforthedesignofmulti-stagegeardrives. T.H.Chongetal./MechanismandMachineTheory37(2002)295310 297 practices. Ratios of even 10:1 are possible 1. Thus, the upper and the lower limits of gear ratios can be set to generally acceptable values according to the above guides, although the denitevaluesofthemarenotknown.Secondly,itisgeneraltochooseagreatervalueforthe gearratiooftherstreductionstagethanthatofthesecondstage.Inthesameway,theratio ofthesecondreductionstageshouldhaveagreatervaluethanthatofthethirdstage,andso forth.Fromthesepremises,arandomvalueisgeneratedforthegearratiooftherstreduction stage u 1 between the lower and upper limits previously specied by the designer. The ratio range from 1:1 to 9:1 has been used for the rst reduction stage of the design examples in Section4(seeTable2).Then,thegearratioofthesecondreductionstage u 2 canbeselectedby settingthegearratiooftherststageasthenewupperlimit.Inotherwords,anotherrandom valueisgeneratedforthegearratioofthesecondstagebetweenthelowerlimitandthegear ratiooftherststagepreviouslydetermined.Thegearratiosforeveryreductionstage u i can be determined by the same way described above. Although the method randomly selects the gear ratios, the gear ratios of every stage shall eventuallyhavepropervalues.Thismaybevalidatedfromthefactthattherearedirectcorre- lationsamonggearratios,thedimensionsandthecongurationofgears,andthevolumeofa gearbox.Thatistosay,gearratiosaectthedimensionsofgears,andthedimensionsofgearsdo thecongurationofthem.Itisobviousthatthecongurationofgearshaveadirecteectonthe volumeofagearbox.ThisfactwillbeclearlyshownbythedesignexamplesinSection4. InStep3,basicdesignparameters(modulem,numberofteethz,andfacewidthb)ofgearsare determinedbyusingthegenerateandtestmethod.Thereareseveralconventionalmethodsto estimategearsizesrecommendedbygearstandardsorganizationsorresearchers.Forexample, AGMA2presentsacompleteguideforthepreliminarydesignprocessofspurandhelicalgears, andDudley6givesageneralwayofestimatinggearsizes.However,thesemethodsdonottake intoconsiderationofthecongurationandthearrangementofthegeardriveelements,although thecongurationofthegearsdirectlyaectsthedimensionsofthem.Onthecontrary,thepro- posedalgorithmintegratesthecongurationandthedimensionaldesignofgearstoconsiderthe relationbetweenthem. Oncethevaluesforthebasicdesignparametersaredetermined,pitchdiameterandouterdi- ameterarecalculatedfrommoduleandnumberofteethforthecongurationdesign.Sincethe purposeofthispaperistoautomatethepreliminaryphaseofthegeardesignprocess,thede- terminationofotherdesignvariables,suchaspressureangle,helixangle,andaddendummodi- cationcoecienthasnotbeenconsidered.Thesedesignvariablescauserelativelysmallchangein the overall size of a gear and are generally determined in the detail design phase. Thus, the variableshavexedvaluesinthedesignprocess.Thisisoneofthekeypointsofenablingtheuse ofthegenerateandtestmethodforthedimensionaldesign,althoughtheeciencyofthemethod isnotgoodinmostcases.Anotherkeypointisthatthesearchtimeofthemethodcanbereduced considerablybylimitingthesearchspaceofthedesignvariables.Firstly,itisrecommendedby standardsorganizations7tousestandardvaluesformodule,andthusitmaybetreatedasa discretevariable.Moreover,theupperandthelowerlimitsofitcanbegivenaccordingtothe applicationofthegeardrive.Secondly,thenumberofteethisobviouslyanintegervariable.The minimumvalueofthenumberofteethinpinioncanbespeciedaccordingtopressureangle,and themaximumvalueofitcanbelimitedtoaconventionalvalue.Finally,supposingthattheface widthisspeciedbyanintegermultipleofmodule(facewidthfactor),asisincommonpractice,it 298 T.H.Chongetal./MechanismandMachineTheory37(2002)295310 canbetreatedasadiscretevariable.Itisalsopossibletospecifytheupperandthelowerlimitsof ittoconventionalvaluesinaccordancewiththeapplication. Oncethedesignvariablesaredetermined,thenstrengthratingpracticeiscarriedoutusingthe AGMAratingformulas8forbendingstrengthandpittingresistanceratingtotestthevalidityof thedimensionaldesignsolution.Ifthegeardoesnotsatisfytheratingpractice,thedesignrestarts withincreasingvaluesofthebasicdesignparametersfromStep2.Thus,thecongurationdesign inStep4iscarriedoutonlyforthegearssatisfyingstrengthanddurabilitycriteria. InStep4,thecongurationdesigniscarriedouttominimizethevolumeofagearboxbyusing thesimulatedannealingalgorithm.Sincetheouterdiameterandthefacewidthofagearhave beendeterminedfromthepreviousdesignsteps,althoughthevaluesareprovisional,thecon- guration design might be considered as a problem of packing gearsof xed size in three-di- mensionalspace.Therehavebeenseveralresearchestosolvethree-dimensionalpackingproblems using optimization techniques 911. In particular, Szykman and Cagan 9,10 have reported signicantlygoodresultsfortheoptimalpackingproblemsofthree-dimensionalelementsofxed Fig. 2.Flowchartofsimulatedannealingalgorithmforthecongurationdesignofageardrive. T.H.Chongetal./MechanismandMachineTheory37(2002)295310 299 sizeusingasimulatedannealingalgorithm.Theproblemofpackinggearsinathree-dimensional spaceisproblematictoconventionalgradient-basedoptimizationmethodsduetodiscontinuities andseverenonlinearitiesinitsobjectivefunctionspace.Simulatedannealingiswellsuitedtothe problem,becauseitiszero-orderalgorithmrequiringnoderivativeinformation,andthusdis- continuitiescanbeeasilydealtwith12,13. Fig. 2 shows the owchart of the simulated annealing algorithm used in this paper for the congurationdesignofageardrive.Startingfromaninitialrandompoint,thealgorithmtakesa stepandthefunctionisevaluated.Whenminimizingafunction,anydownhillstepisacceptedand theprocessrepeatsfromthisnewpoint.Anuphillstepmaybeaccepted.Thus,itcanescapefrom thelocaloptima.Thisuphilldecisionismadeby theMetropoliscriteria. Astheoptimization process proceeds, the length of the step declines and the algorithm closes in on the global optimum. 3. Objective function formulation for conguration design TheobjectivefunctionFforthecongurationdesignisformulatedsimplyasthelinearsum- mationofthevolumeofavirtualgearbox,i.e.aboxcompletelyboundingthegears,andthe spatialconstraints,asshowninEq.(1) F W box P box V box X nc i1 W i P i C i jj; 1 where W box , P box arethe weighting factor and thenormalizing factor for the volume V box of a virtualgearbox,respectively. W i and P i aretheweightingfactorsandthenormalizingfactorsfor ithconstraint,C i .Thetotalnumberofconstraintsisnc.ThevaluesofnormalizingfactorsP box and P i areonedividedbythemaximumvaluesofV box andC i atthecurrentposition,respectively.The spatial constraints C i should be satised to congure the gear drive elements properly. The constraintsconsistoffourtypesofspatialconstraints;thecenterdistanceconstraintsforproper meshingofpinionandgear,thefacedistanceconstraintsformatingofco-axisgears,thegear interferenceconstraintstoavoidtheinterferencebetweengears,andtheshaftinterferencecon- straintstoavoidtheinterferencebetweengearandshaft.AstheobjectivefunctionFminimizes, thevaluesoftheconstraintsapproachzero. InordertoconrmthevalidityofthecongurationdesignalgorithmusingEq.(1),thecon- gurationdesignofsixcylindershasbeencarriedout.Thecylindersconsistofthreecylinderswith thesamediameterof10mm,andthreecylindersof20mm.Theheightofeverycylinderis10mm. Thiscongurationisfortheanalogyofgearmeshingofathree-stagereductiongeardrive. Fig.3showstheoptimalcongurationsofthesixcylinders.Theglobaloptimalcongurationis in Fig. 3(a) with its bounding box having a volume of 24000mm 3 . Fig. 3(b) shows another possibleconguration,i.e.alocaloptimum,havingavolumeof24500mm 3 .Thisconguration alsomightberegardedasagooddesign,thoughitisnotaglobaloptimum.Theconstraintsto locateproperpositionsofcylindersareshowninEqs.(2)(13). C 1 d 1 d 2 =2C0 x 1 C0 x 2 2 y 1 C0 y 2 2 q 0; 2 300 T.H.Chongetal./MechanismandMachineTheory37(2002)295310 C 2 z 1 C0 z 2 0; 3 C 3 d 3 d 4 =2C0 x 3 C0 x 4 2 y 3 C0 y 4 2 q 0; 4 C 4 z 3 C0 z 4 0; 5 C 5 d 5 d 6 =2C0 x 5 C0 x 6 2 y 5 C0 y 6 2 q 0; 6 C 6 z 5 C0 z 6 0; 7 C 7 z 2 j C0 z 3 jC0 b 2 b 3 =20; 8 C 8 x 2 C0 x 3 0; 9 C 9 y 2 C0 y 3 0; 10 C 10 z 4 j C0 z 5 jC0 b 4 b 5 =20; 11 C 11 x 4 C0 x 5 0; 12 C 12 y 4 C0 y 5 0; 13 wherecoordinatesx;y;zrepresentthecenterpositionofacylinder.Thediameterandtheheight (facewidth)ofacylinderaredandb,respectively.Thesubscriptsinthevariablesrepresentthe numberofthecylindersinFig.3. Theaboveconstraintsmaybeclassiedintothecenterdistanceconstraintsandthefacedis- tanceconstraintsaccordingtothespatialrelationbetweencylinders.Theconstraints C 1 and C 2 representthecenterdistanceconstraintsforpropermeshingofcylindersintherststage.This might be regarded as an analogy of meshing of pinion and gear in a gear drive (see Fig. 4). Similarly,C 3 C 4 andC 5 C 6 representthecenterdistanceconstraintsforthesecondandthethird stage,respectively.Fromtheseequations,thegeneralrepresentationofthecenterdistancecon- straintscanbederivedasshowninEq.(14). Fig. 3.Optimalcongurationsofsixcylinders:(a)globaloptimalconguration;(b)alocaloptimalconguration. T.H.Chongetal./MechanismandMachineTheory37(2002)295310 301 d 2iC01 C0 d 2i C1 =2C0 x 2iC01 C0 x 2i C0C1 2 y 2iC01 C0 y 2i C0C1 2 q 0; z 2iC01 C0 z 2i 0 i 1;2; .;n; 14 wherenisthetotalnumberofstages. Theconstraints C 7 C 9 representthefacedistanceconstraintsforcylinders2and3inthexy planeandinthezdirection.Thismightberegardedasananalogyofmatingrelationofco-axis gearsinageardrive(seeFig.5).Similarly, C 10 C 12 representthefacedistanceconstraintsfor cylinders4,5andEq.(15)showsthegeneralrepresentationofthefacedistanceconstraints. z 2i C12 C12 C0 z 2i1 C12 C12 C0 b 2i C0 b 2i1 C1 =20; x 2i C0 x 2i1 0; y 2i C0 y 2i1 0 i 1;2; .;n C01: 15 Fig.6showsoneofthecongurationdesignresultsusingtheproposedformulation.Inthis case,thevaluesfortheweightingfactorswerechosentounitytoevaluatetheeciencyofthe algorithm. Final volume of the bounding box was 24962mm 3 , and the number of function Fig. 5.Schematicoffacedistanceconstraints. Fig. 4.Schematicofcenterdistanceconstraints. 302 T.H.Chongetal./MechanismandMachineTheory37(2002)295310 evaluationwas61201.Thecongurationresultwasconsiderablygoodcomparedtotheoptimal congurationsinFig.3.Thisindicatesthatthesimulatedannealingalgorithmwiththeobjective functionformulationofEq.(1)canbeusedtoeectivelyconguregears. Meanwhile,theconstraintsforthecongurationdesignofmulti-stagegeardrivesalsoinclude theinterferenceconstraintsbetweengearsandshafts.Forexample,theinterferenceconstraints forathree-stagegeardriveareshowninEqs.(16)(27).TheinequalitysignsofC 13 C 24 meanthat iftheinterferenceconstrainthasavaluesmallerthanzero,thenthereisnointerferenceandthe constraintisnotincludedintheobjectivefunction. C 13 d o1 d o5 =2C0 x 1 C0 x 5 2 y 1 C0 y 5 2 q 0; 16 C 14 d o1 d o6 =2C0 x 1 C0 x 6 2 y 1 C0 y 6 2 q 0; 17 C 15 d o2 d o5 =2C0 x 2 C0 x 5 2 y 2 C0 y 5 2 q 0; 18 C 16 d o2 d o6 =2C0 x 2 C0 x 6 2 y 2 C0 y 6 2 q 0; 19 C 17 d s1 d o4 =2C0 x s1 C0 x 4 2 y s1 C0 y 4 2 q 0; 20 C 18 d s1 d o6 =2C0 x s1 C0 x 6 2 y s1 C0 y 6 2 q 0; 21 C 19 d s2 d o6 =2C0 x s2 C0 x 6 2 y s2 C0 y 6 2 q 0; 22 C 20 d s3 d o1 =2C0 x s3 C0 x 1 2 y s3 C0 y 1 2 q 0; 23 C 21 d s3 d o2 =2C0 x s3 C0 x 2 2 y s3 C0 y 2 2 q 0; 24 C 22 d s4 d o1 =2C0 x s4 C0 x 1 2 y s4 C0 y 1 2 q 0; 25 C 23 d s4 d o2 =2C0 x s4 C0 x 2 2 y s4 C0 y 2 2 q 0; 26 Fig. 6.Congurationresultofthesixcylinders:(a)two-dimensionalrepresentation;(b)three-dimensionalrepresen- tation. T.H.Chongetal./MechanismandMachineTheory37(2002)295310 303 C 24 d s4 d o4 =2C0 x s4 C0 x 4 2 y s4 C0 y 4 2 q 0; 27 wherecoordinates x;y;z and x s ;y s ;z s representthecenterpositionsofagearandashaft,re- spectively.Thediametersd o andd s representtheouterdiameterofagearandashaft,respectively. Theconstraints C 13 C 16 areincludedtoavoidinterferencesbetweenthegears.Forexample, C 14 meansthatthedistancebetweengear2andgear5mustbelargeenoughtoavoidtheinterference betweentheouterdiametersofthem.ThereisnointerferenceinthecongurationofFig.7,butin somecase,gear5canbeplacedonthebottomofgear4inthezdirection.Inthiscase,thereisa possibleinterferencebetweengear2andgear5(seeFig.8).Inaddition,theinterferencebetween gear1andgear5possiblyoccurs,ifgear1islocatedontheright-handsideofgear2inthex directionC 13 .Thegearinterferenceconstraintscanberepresentedinthegeneralformulationas showninEq.(28). d o2iC01 C0 d o2jC01 C1 =2C0 x 2iC01 C0 x 2jC01 C0C1 2 y 2iC01 C0 y 2jC01 C0C1 2 q 0; d o2iC01 C0 d o2j C1 =2C0 x 2iC01 C0 x 2j C0C1 2 y 2iC01 C0 y 2j C0C1 2 q 0; d o2i C0 d o2jC01 C1 =2C0 x 2i C0 x 2jC01 C0C1 2 y 2i C0 y 2jC01 C0C1 2 q 0; d o2i C0 d o2j C1 =2C0 x 2i C0 x 2j C0C1 2 y 2i C0 y 2j C0C1 2 q 0 i 1;2; .;n C01; j i 2;i 3; .;n: 28 Fig. 7.Acongurationofathree-stagegeardrive. Fig. 8.Interferencebetweengear2andgear5. 304 T.H.Chongetal./MechanismandMachineTheory37(2002)295310 Similarly, C 17 C 24 representtheinterferenceconstraintsbetweenthegearsandtheshafts,and the meaning of the constraints are identical to those of C 13 C 16 . Eq. (29) shows the general representationoftheshaftinterferenceconstraints. d si C0 d o2j C1 =2C0 x si C0 x 2j C0C1 2 y i C0 y 2j C0C1 2 q 0 i 1;2; .;ns C02; j i 1;i 2; .;
收藏