鋼筋彎曲機(jī)設(shè)計(jì)
鋼筋彎曲機(jī)設(shè)計(jì),鋼筋彎曲機(jī)設(shè)計(jì),鋼筋,彎曲,曲折,設(shè)計(jì)
(鋼筋彎曲機(jī)設(shè)計(jì)) 1 目錄 目錄 1 中英文摘要 2 緒論 3 第 1 章 彎矩計(jì)算與電動(dòng)機(jī)選擇 4 1.1 工作狀態(tài) 4 2.1 材料達(dá)到屈服極限時(shí)的始彎矩 4 第 2 章 v 帶傳動(dòng)設(shè)計(jì) 5 2.1 V 帶輪的設(shè)計(jì)計(jì)算 5 第 3 章 第一級(jí)圓柱齒輪設(shè)計(jì) 8 3.1 選擇材料 8 3.2 接觸強(qiáng)度進(jìn)行初步設(shè)計(jì) 8 3.3 齒輪校核 10 3.4 齒輪及齒輪副精度的檢驗(yàn)項(xiàng)目計(jì)算 12 第 4 章 第三級(jí)圓柱齒輪設(shè)計(jì) 14 4.1 選擇材料 14 4.2 接觸強(qiáng)度進(jìn)行初步設(shè)計(jì) 14 4.3 齒輪校核 15 4.4 4齒輪及齒輪副精度的檢驗(yàn)項(xiàng)目計(jì)算 18 第 5 章中間軸設(shè)計(jì) 20 5.1 計(jì)算作用在軸上的力 20 5.2 計(jì)算支力和彎矩 20 5.3 截面校核 22 第 6 章主軸設(shè)計(jì) 24 6.1 計(jì)算作用在軸上的力 24 6.2 計(jì)算支力和彎矩 25 6.3 截面校核 26 第 7 章 軸承的選擇 28 7.1 滾動(dòng)軸承選擇 28 中英文 28 總結(jié) 32 參考文獻(xiàn) 33 (鋼筋彎曲機(jī)設(shè)計(jì)) 2 摘 要 通過(guò)強(qiáng)度計(jì)算分析,認(rèn)為現(xiàn)有 GW-40 彎曲機(jī)的大部分零件有較大的設(shè)計(jì)裕 量,需要改變個(gè)別零部件及電動(dòng)機(jī)功率即可大幅度提高加工能力,滿足 40 鋼筋的 彎曲加工。還可以升級(jí)為 GW-50 鋼筋彎曲機(jī)。 關(guān)鍵詞 鋼筋彎曲機(jī) 始彎矩 終彎矩 主軸扭矩 【Abstract】 Adopt analyze and count of the intensity ,we believe that the components of the Steel reinforcing bar- curved equipment have the huge design foreground . we can Improve the ability of machining, only change very few components and the electric Motors efficiency. It can be contented to the machining of the 40 screw thread steel and go up to the 50 steel reinforcing bar curved equipment. Key words: steel reinforcing bar-curved equipment first curved last curved Main shaft curved. (鋼筋彎曲機(jī)設(shè)計(jì)) 3 鋼筋彎曲機(jī)設(shè)計(jì)及其運(yùn)動(dòng)過(guò)程虛擬 專(zhuān)業(yè):機(jī)械設(shè)計(jì)制造及其自動(dòng)化, 學(xué)號(hào):2000121406,姓名:胡茂正 指導(dǎo)教師:劉杰華,招惠玲,陳敏華 緒論 我國(guó)工程建筑機(jī)械行業(yè)近幾年之所以能得到快速發(fā)展,一方面通過(guò)引進(jìn)國(guó) 外先進(jìn)技術(shù)提升自身產(chǎn)品檔次和國(guó)內(nèi)勞動(dòng)力成本低廉是一個(gè)原因,另一方面 國(guó)家連續(xù)多年實(shí)施的積極的財(cái)政政策更是促使行業(yè)增長(zhǎng)的根本動(dòng)因。 受?chē)?guó)家連續(xù)多年實(shí)施的積極財(cái)政政策的刺激,包括西部大開(kāi)發(fā)、西氣東輸、 西電東送、青藏鐵路、房地產(chǎn)開(kāi)發(fā)以及公路(道路) 、城市基礎(chǔ)設(shè)施建設(shè)等一 大批依托工程項(xiàng)目的實(shí)施,這對(duì)于重大建設(shè)項(xiàng)目裝備行業(yè)的工程建筑機(jī)械行 業(yè)來(lái)說(shuō)可謂是難得的機(jī)遇,因此整個(gè)行業(yè)的內(nèi)需勢(shì)頭旺盛。同時(shí)受我國(guó)加入 WTO 和國(guó)家鼓勵(lì)出口政策的激勵(lì),工程建筑機(jī)械產(chǎn)品的出口形勢(shì)也明顯好轉(zhuǎn)。 我國(guó)建筑機(jī)械行業(yè)運(yùn)行的基本環(huán)境、建筑機(jī)械行業(yè)運(yùn)行的基本狀況、建筑 機(jī)械行業(yè)創(chuàng)新、建筑機(jī)械行業(yè)發(fā)展的政策環(huán)境、國(guó)內(nèi)建筑機(jī)械公司與國(guó)外建 筑機(jī)械公司的競(jìng)爭(zhēng)力比較以及 2004 年我國(guó)建筑機(jī)械行業(yè)發(fā)展的前景趨勢(shì)進(jìn)行 了深入透徹的分析。 (鋼筋彎曲機(jī)設(shè)計(jì)) 4 第 1 章 彎矩計(jì)算與電動(dòng)機(jī)選擇 1.1 工作狀態(tài) 1.鋼筋受力情況與計(jì)算有關(guān)的幾何尺寸標(biāo)記圖 1。設(shè)鋼筋所需彎矩:M t= 式sini0LFr 中 F 為撥斜柱對(duì)鋼筋的作用力;F r為 F 的徑向分力;a 為 F 與鋼筋軸線夾角。 當(dāng) Mt 一定,a 越大則撥斜柱及主軸徑向負(fù)荷越小;a=arcos(L 1/Lo)一定,L o越大。因此, 彎曲機(jī)的工作盤(pán)應(yīng)加大直徑,增大撥斜柱中心到主軸中心距離 L0 GW-50 鋼筋彎曲機(jī)的工作盤(pán)設(shè)計(jì):直徑 400mm,空間距 120mm,L 0=169.7 mm,Ls=235,a=43.8 0 a工 作 盤(pán) ; 2-中 心 柱 套 ; 3撥 料 柱4擋 料 柱 ; 5鋼 筋 ; 6插 入 座17.45圖 1 鋼 筋 受 力 情 況 2.鋼筋彎曲機(jī)所需主軸扭矩及功率 按照鋼筋彎曲加工規(guī)范規(guī)定的彎曲半徑彎曲鋼筋,其彎曲部分的變形量均接近或過(guò)材 的額定延伸率,鋼筋應(yīng)力超過(guò)屈服極限產(chǎn)生塑性變形。 2.1 材料達(dá)到屈服極限時(shí)的始彎矩 1.按 40 螺紋鋼筋公稱(chēng)直徑計(jì)算 M0=K1W s式中,M 0為始彎矩,W 為抗彎截面模數(shù),K 1為截面系數(shù),對(duì)圓截面 K 1=1.7;對(duì)于 25MnSi 螺紋鋼筋 M0=373(N/mm 2),則得出始彎矩 M0=3977(Nm) 2. 鋼筋變形硬化后的終彎矩 鋼筋在塑性變形階段出現(xiàn)變形硬化(強(qiáng)化) ,產(chǎn)生變形硬化后的終彎矩:M=(K 1+K0/2Rx) W s式中,K 0為強(qiáng)化系數(shù),K 0=2.1/ p=2.1/0.14=15, p為延伸率,25MnSi 的 p=14%,R x=R/d0,R 為彎心直徑,R=3 d 0, 則得出終彎矩 M=11850(Nm) 3. 鋼筋彎曲所需距 Mt=(M0+M)/2/K=8739(Nm)式中,K 為彎曲時(shí)的滾動(dòng)摩擦系數(shù),K=1.05 按上述計(jì)算方 法同樣可以得出 50I 級(jí)鋼筋( b=450 N/mm2)彎矩所需彎矩:M t=8739(Nm),取較大者作 為以下計(jì)算依據(jù)。 4. 電動(dòng)機(jī)功率 由功率扭矩關(guān)系公式 A0=Tn/9550=2.9KW,考慮到部分機(jī)械效率 =0.75,則電動(dòng)機(jī)最大 (鋼筋彎曲機(jī)設(shè)計(jì)) 5 負(fù)載功率 A= A0/=2.9/0.75=3.9(KW) ,電動(dòng)機(jī)選用 Y 系列三相異步電動(dòng)機(jī),額定功率為 =4(KW),額定轉(zhuǎn)速 =1440r/min。eAen 6. 電動(dòng)機(jī)的控制 (如圖 2 所知) 圖 2 鋼 筋 彎 曲 電 氣 圖 制 動(dòng) 剎 車(chē)電 機(jī) 反 轉(zhuǎn)電 機(jī) 正 轉(zhuǎn) 第 2 章 v 帶傳動(dòng)設(shè)計(jì) 2.1 V 帶輪的設(shè)計(jì)計(jì)算 電動(dòng)機(jī)與齒輪減速器之間用普通 v 帶傳動(dòng),電動(dòng)機(jī)為 Y112M-4,額定功率 P=4KW,轉(zhuǎn)速 =1440 ,減速器輸入軸轉(zhuǎn)速 =514 ,輸送裝置工作時(shí)有輕微沖擊,每天工作 161nmir2nmir 個(gè)小時(shí) 1. 設(shè)計(jì)功率 根據(jù)工作情況由表 8122 查得工況系數(shù) =1.2, = P=1.2 4=4.8KWAKdPA 2. 選定帶型 根據(jù) =4.8KW 和轉(zhuǎn)速 =1440 ,有圖 812 選定 A 型dP1nmir 3. 計(jì)算傳動(dòng)比 = = =2.821n540 4. 小帶輪基準(zhǔn)直徑 1d 由表 8112 和表 8114 取小帶輪基準(zhǔn)直徑 =75mm1d 5. 大帶輪的基準(zhǔn)直徑 2d (鋼筋彎曲機(jī)設(shè)計(jì)) 6 大帶輪的基準(zhǔn)直徑 = (1- )2di1 取彈性滑動(dòng)率 =0.02 = (1- )=2.8 =205.8mm2di1 )02.(75 實(shí)際傳動(dòng)比 = =2.85i)(12d 從動(dòng)輪的實(shí)際轉(zhuǎn)速 = = =505.262ni85.40minr 轉(zhuǎn)速誤差 =1.7%1652 對(duì)于帶式輸送裝置,轉(zhuǎn)速誤差在 范圍是可以的% 6. 帶速 = =5.6210647501ndsm 7. 初定軸間距 a 0.7( + ) ( + )1d201d2 0.7(75+205) (75+205) 196 560a 取 =400mm 8. 所需 v 帶基準(zhǔn)長(zhǎng)度 0dL =2 +0dLa021214)()(add =2 )75()75(42 =800+439.6+10.56 =1250.16mm 查表 818 選取 mLd1250 9. 實(shí)際軸間距 a (鋼筋彎曲機(jī)設(shè)計(jì)) 7 =400mm200dLa 10. 小帶輪包角 1 = -1080123.57ad = 006. = 1238 11. 單根 v 帶的基本額定功率 1p 根據(jù) =75mm 和 =1440 由表 8127(c)用內(nèi)插法得 A 型 v 帶的 =0.68KW1dnmir 1p 12. 額定功率的增量 1 根據(jù) 和 由表 8127(c)用內(nèi)插法得 A 型 v 帶的in401r5.2 =0.17KWp 13. V 帶的根數(shù) Z Z= Ldk)(1 根據(jù) 查表 8123 得 =0.9503.6k 根據(jù) =1250mm 查表得 818 得 =0.93DL Z= = =6.38Ldkp)(1 93.05)7.06.(4 取 Z=7 根 14. 單根 V 帶的預(yù)緊力 0F =500( 由表 8124 查得 A 型帶 m=0.100F2)15.2mzpkd mkg 則 =500( =99.53N0 2).d (鋼筋彎曲機(jī)設(shè)計(jì)) 8 15. 壓軸力 QF = =2 =1372N2sin10Z238.16sin75.90 16. 繪制工作圖 3.27圖 帶 輪 第 3 章 圓柱齒輪設(shè)計(jì) 3.1 選擇材料 確定 和 及精度等級(jí)limHliF 參考表 8324 和表 8325 選擇兩齒輪材料為:大,小齒輪均為 40Cr,并經(jīng)調(diào)質(zhì)及表 面淬火,齒面硬度為 48-50HRc,精度等級(jí)為 6 級(jí)。按硬度下限值,由圖 838(d)中的 MQ 級(jí)質(zhì)量指標(biāo)查得 = =1120Mpa;由圖 839(d)中的 MQ 級(jí)質(zhì)量指標(biāo)查得limHliF FE1= FE2=700Mpa, Flim1= Flim2=350 MPa 3.2 按接觸強(qiáng)度進(jìn)行初步設(shè)計(jì) 1. 確定中心距 a(按表 8328 公式進(jìn)行設(shè)計(jì)) aCmAa(+1) 321HKT =1C483 (鋼筋彎曲機(jī)設(shè)計(jì)) 9 K=1.7 mNT1642.0MPaH8 取a17520 2. 確定模數(shù) m (參考表 834 推薦表) m=(0.0070.02)a=1.44, 取 m=3mm 3. 確定齒數(shù) z ,z12 z = = =20.51 取 z =211)(ma)5.(301 z =z =5.5 21=115.5 取 z =1162 2 4. 計(jì)算主要的幾何尺寸(按表 835 進(jìn)行計(jì)算) 分度圓的直徑 d =m z =3 21=63mm1 d =m z =3*116=348mm2 齒頂圓直徑 d = d +2h =63+2 3=69mm1aa d = d +2h =348+2 3=353mm2 端面壓力角 0 基圓直徑 d = d cos =63 cos20 =59.15mm1b 0 d = d cos =348 cos20 =326.77mm2 齒頂圓壓力角 =arccos =31.021at1ab0 = arccos =22.632at 2abd0 端面重合度 = z (tg -tg )+ z (tg -tg )a11at 22at (鋼筋彎曲機(jī)設(shè)計(jì)) 10 =1.9 齒寬系數(shù) = = =1.3d1b6380 縱向重合度 =0 3.3 齒輪校核 1. 校核齒面接觸強(qiáng)度 (按表 8315 校核) 強(qiáng)度條件: = H 計(jì)算應(yīng)力: =Z Z Z Z Z 1BE1bdFKktHVA = 2H1BD 式中: 名義切向力 F = = =2005Nt10dT6317.0 使用系數(shù) K =1(由表 8331 查?。〢 動(dòng)載系數(shù) =( )V20B 式中 V= smnd7.1654.316 A=83.6 B=0.4 C=6.57 =1.2VK 齒向載荷分布系數(shù) K =1.35(由表 8332 按硬齒面齒輪,裝配時(shí)檢修調(diào)整,6 級(jí)H 精度 K 非對(duì)稱(chēng)支稱(chēng)公式計(jì)算)H34.1 齒間載荷分配系數(shù) (由表 8333 查?。?.1H 節(jié)點(diǎn)區(qū)域系數(shù) = 1.5(由圖 8311 查?。㈱ 重合度的系數(shù) (由圖 8312 查?。?. 螺旋角系數(shù) (由圖 8313 查?。? (鋼筋彎曲機(jī)設(shè)計(jì)) 11 彈性系數(shù) (由表 8334 查?。㎝PaZE8.19 單對(duì)齒嚙合系數(shù) Z =1B = 1H = 143.17MPa2H 806325.1035.180.7.1895. 許用應(yīng)力: = XWRVLNTHZZSlim 式中:極限應(yīng)力 =1120MPali 最小安全系數(shù) =1.1(由表 8335 查?。﹍imH 壽命系數(shù) =0.92(由圖 8317 查?。㎞TZ 潤(rùn)滑劑系數(shù) =1.05(由圖 8319 查取,按油粘度等于 350 )L sm 速度系數(shù) =0.96(按 由圖 8320 查取)V,7.1s 粗糙度系數(shù) =0.9(由圖 8321 查?。㏑Z 齒面工作硬化系數(shù) =1.03(按齒面硬度 45HRC,由圖 8322 查取)W 尺寸系數(shù) =1(由圖 8323 查?。 則: = =826MPaH0.1596.012.10 滿足 H 2. 校核齒根的強(qiáng)度 (按表 8315 校核) 強(qiáng)度條件: = 1F 許用應(yīng)力: = ; 1 FVASaFnt KYbm1212SFF (鋼筋彎曲機(jī)設(shè)計(jì)) 12 式中:齒形系數(shù) =2.61, =2.2(由圖 8315(a)查?。?FY2F 應(yīng)力修正系數(shù) , (由圖 8316(a)查取)6.Sa7.1SaY 重合度系數(shù) =1.9 螺旋角系數(shù) =1.0(由圖 8314 查?。℡ 齒向載荷分布系數(shù) = =1.3(其中 N=0.94,按表 8330 計(jì)算)FKNH 齒間載荷分配系數(shù) =1.0(由表 8333 查取) 則 =94.8MPa1F = =88.3MPa26.127 許用應(yīng)力: = (按 值較小齒輪校核)FXlTrelNTSYYRlimlimF 式中: 極限應(yīng)力 =350MPali 安全系數(shù) =1.25(按表 8335 查?。﹍imFS 應(yīng)力修正系數(shù) =2(按表 8330 查取)TY 壽命系數(shù) =0.9(按圖 8318 查?。㏒ 齒根圓角敏感系數(shù) =0.97(按圖 8325 查?。﹔elT 齒根表面狀況系數(shù) =1(按圖 8326 查?。﹍YR 尺寸系數(shù) =1(按圖 8324 查取)X 則 =FMPa497.025.13 滿足, 驗(yàn)算結(jié)果安全1F 3.4 齒輪及齒輪副精度的檢驗(yàn)項(xiàng)目計(jì)算 1.確定齒厚偏差代號(hào)為:6KL GB1009588(參考表 8354 查?。?2.確定齒輪的三個(gè)公差組的檢驗(yàn)項(xiàng)目及公差值(參考表 8358 查?。┑诠罱M檢驗(yàn)切 向綜合公差 , = =0.063+0.009=0.072mm,(按表 8369 計(jì)算,由表 8360,1iFifP (鋼筋彎曲機(jī)設(shè)計(jì)) 13 表 8359 查取);第公差組檢驗(yàn)齒切向綜合公差 , =0.6( )1ifi tptf =0.6(0.009+0.011)=0.012mm, (按表 8369 計(jì)算,由表 8359 查取) ;第公差組檢驗(yàn) 齒向公差 =0.012(由表 8361 查?。?。F 3.確定齒輪副的檢驗(yàn)項(xiàng)目與公差值(參考表 8358 選擇)對(duì)齒輪,檢驗(yàn)公法線長(zhǎng)度的偏 差 。按齒厚偏差的代號(hào) KL,根據(jù)表 8353m 的計(jì)算式求得齒厚的上偏差 =-12 =-12wE sEptf 0.009=-0.108mm,齒厚下偏差 =-16 =-16 0.009=-0.144mm;公法線的平均長(zhǎng)度上偏差siEptf = *cos -0.72 sin =-0.108 cos -0.72 =-0.110mm,下偏差WSsTF0202sin36.a = cos +0.72 sin =-0.144 cos +0.72 0.036 sin =-0.126mm;按表 8wiEsi 319 及其表注說(shuō)明求得公法線長(zhǎng)度 =87.652, 跨齒數(shù) K=10,則公法線長(zhǎng)度偏差可表示為:knW ,對(duì)齒輪傳動(dòng),檢驗(yàn)中心距極限偏差 ,根據(jù)中心距 a=200mm,由表查得 810.26.587 f 365 查得 = ;檢驗(yàn)接觸斑點(diǎn),由表 8364 查得接觸斑點(diǎn)沿齒高不小于 40%,沿齒f3. 長(zhǎng)不小于 70%;檢驗(yàn)齒輪副的切向綜合公差 =0.05+0.072=0.125mm(根據(jù)表 8358 的表注icF 3,由表 8369,表 8359 及表 8360 計(jì)算與查?。?;檢驗(yàn)齒切向綜合公差 =0.0228mm, (根據(jù) 8358 的表注 3,由表 8369,表 8359 計(jì)算與查取) 。對(duì)箱體,icf 檢驗(yàn)軸線的平行度公差, =0.012mm, =0.006mm(由表 8363 查?。?。確定齒坯的精度xfyf 要求按表 8366 和 8367 查取。根據(jù)大齒輪的功率,確定大輪的孔徑為 50mm,其尺寸和 形狀公差均為 6 級(jí),即 0.016mm,齒輪的徑向和端面跳動(dòng)公差為 0.014mm。 3. 齒輪工作圖 0.81.6 圖 4 大 齒 輪 (鋼筋彎曲機(jī)設(shè)計(jì)) 14 二 由于第一級(jí)齒輪傳動(dòng)比與第二級(jí)傳動(dòng)比相等,則對(duì)齒輪的選擇,計(jì)算以及校核都與第一級(jí) 一樣 第 4 章 第三級(jí)圓柱齒輪的設(shè)計(jì) 4.1 選擇材料 1.確定 Hlim和 Flim及精度等級(jí)。 參考表 8324 和表 8325 選擇兩齒輪材料為:大,小齒輪均為 40Cr,并經(jīng)調(diào)質(zhì)及表 面淬火,齒面硬度為 4850HRc,精度等級(jí)為 6 級(jí)。按硬度下限值,由圖 838(d)中的 MQ 級(jí)質(zhì)量指標(biāo)查得 Hlim= Hlim=1120Mpa;由圖 839(d)中的 MQ 級(jí)質(zhì)量指標(biāo)查得 FE1= FE2=700Mpa, Flim1= Flim2=350 Mpa. 4.2 按接觸強(qiáng)度進(jìn)行初步設(shè)計(jì) 1. 確定中心距 a(按表 8328 公式進(jìn)行設(shè)計(jì)) aCmAa(+1) 21HKT =1C483 K=1.7 mNT1624.0MPaH86 則 a=325mm 取 a=400mm 2. 確定模數(shù) m (參考表 834 推薦表) m=(0.0070.02)a=2.88, 取 m=4mm 3. 確定齒數(shù) z ,z12 0421 z = = =28 取 z =281)(ma)16(1 (鋼筋彎曲機(jī)設(shè)計(jì)) 15 z =172 取 z =1722 2 4. 計(jì)算主要的幾何尺寸(按表 835 進(jìn)行計(jì)算) 分度圓的直徑 d =m z =4 28=112mm1 d =m z = =688mm2724 齒頂圓直徑 d = d +2h =112+2 4=120mm1aa d = d +2h =688+2 4=696mm2 齒根圓直徑 mzf 1025.1 f 6782 端面壓力角 0 基圓直徑 d = d cos =112 cos20 =107.16mm1b0 d = d cos =688 cos20 =646.72mm2 齒頂圓壓力角 =arccos =1at1ab07.26 = arccos =2at 2abd0. 端面重合度 = z (tg -tg )+ z (tg -tg )a11at 22at =1.15 齒寬系數(shù) = = =1.3 d1b6380 齒寬 ma1604. 縱向重合度 =0 4.3 校核齒輪 1.校核齒面接觸強(qiáng)度 (按表 8330 校核) 強(qiáng)度條件: = H (鋼筋彎曲機(jī)設(shè)計(jì)) 16 計(jì)算應(yīng)力: =Z Z Z Z Z 1HBE1bdFKktHVA = 21BD 式中: 名義切向力 F = = =34107Nt10dT631902 使用系數(shù) K =1(由表 8331 查?。〢 動(dòng)載系數(shù) =( )V20B 式中 V= smnd09.16716 A=83.6 B=0.4 C=6.57 =1.05VK 齒向載荷分布系數(shù) K =1.35(由表 8332 按硬齒面齒輪,裝配時(shí)檢修調(diào) 6 級(jí)精度H K 非對(duì)稱(chēng)支稱(chēng)公式計(jì)算)H34.1 齒間載荷分配系數(shù) (由表 8333 查取)0.1H 節(jié)點(diǎn)區(qū)域系數(shù) = 1.5(由圖 8311 查?。㈱ 重合度的系數(shù) (由圖 8312 查?。?. 螺旋角系數(shù) (由圖 8313 查?。? 彈性系數(shù) (由表 8334 查?。㎝PaZE.18 單對(duì)齒齒合系數(shù) Z =1B = 1H = 301.42MPa2H 806325.1035.180.7.1895. (鋼筋彎曲機(jī)設(shè)計(jì)) 17 許用應(yīng)力: =HXWRVLNTZZSlim 式中:極限應(yīng)力 =1120MPali 最小安全系數(shù) =1.1(由表 8335 查?。﹍imH 壽命系數(shù) =0.92(由圖 8317 查?。㎞TZ 潤(rùn)滑劑系數(shù) =1.05(由圖 8319 查取,按油粘度等于 350 )L sm 速度系數(shù) =0.96(按 由圖 8320 查?。¬,7.1s 粗糙度系數(shù) =0.9(由圖 8321 查取)RZ 齒面工作硬化系數(shù) =1.03(按齒面硬度 45HRC,由圖 8322 查?。¦ 尺寸系數(shù) =1(由圖 8323 查?。 則: = =826MPaH0.1596.012.10 滿足 H 2. 校核齒根的強(qiáng)度 (按表 8315 校核) 強(qiáng)度條件: = 1F 許用應(yīng)力: = ; 1 FVASaFnt KYbm1212SFF 式中:齒形系數(shù) =2.61, =2.2(由圖 8315(a)查取)1Y2 應(yīng)力修正系數(shù) , (由圖 8316(a)查?。?.Sa7.SaY 重合度系數(shù) =1.9 螺旋角系數(shù) =1.0(由圖 8314 查取)Y 齒向載荷分布系數(shù) = =1.3(其中 N=0.94,按表 8330 計(jì)算)FKNH (鋼筋彎曲機(jī)設(shè)計(jì)) 18 齒間載荷分配系數(shù) =1.0(由表 8333 查?。〧K 則 =94.8MPa1F = =88.3MPa26.127 許用應(yīng)力: = (按 值較小齒輪校核)FXlTrelNTSYYRlimlimF 式中: 極限應(yīng)力 =350MPali 安全系數(shù) =1.25(按表 8335 查取)limFS 應(yīng)力修正系數(shù) =2(按表 8330 查?。㏕Y 壽命系數(shù) =0.9(按圖 8318 查?。㏒ 齒根圓角敏感系數(shù) =0.97(按圖 8325 查?。﹔elT 齒根表面狀況系數(shù) =1(按圖 8326 查?。﹍YR 尺寸系數(shù) =1(按圖 8324 查?。 則 =FMPa497.025.13 滿足, 驗(yàn)算結(jié)果安全1F 4.4 齒輪及齒輪副精度的檢驗(yàn)項(xiàng)目計(jì)算 1.確定齒厚偏差代號(hào)為:6KL GB1009588(參考表 8354 查?。?2.確定齒輪的三個(gè)公差組的檢驗(yàn)項(xiàng)目及公差值(參考表 8358 查?。?第公差組檢驗(yàn)切向綜合公差 , = =0.063+0.009=0.072mm,(按1iiFfP 表 8369 計(jì)算,由表 8360,表 8359 查取); 第公差組檢驗(yàn)齒切向綜合公差 , =0.6( )1ifi tptf =0.6(0.009+0.011)=0.012mm, (按表 8369 計(jì)算,由表 8359 查?。?; 第公差組檢驗(yàn)齒向公差 =0.012(由表 8361 查取) 。F 3.確定齒輪副的檢驗(yàn)項(xiàng)目與公差值(參考表 8358 選擇) 對(duì)齒輪,檢驗(yàn)公法線長(zhǎng)度的偏差 。按齒厚偏差的代號(hào) KL,根據(jù)表 8353wE (鋼筋彎曲機(jī)設(shè)計(jì)) 19 的計(jì)算式求得齒厚的上偏差 =-12 =-12sEptf 0.009=-0.108mm,齒厚下偏差 =-16 =-16 0.009=-0.144mm;公法線的平sit 均長(zhǎng)度上偏差 = *cos -0.72 sin =-0.108 cos -0.72 WSsTF02 =-0.110mm,下偏差 = cos +0.72 sin =-0.144 cos02sin36.0awiEsiTF +0.72 0.036 sin =-0.126mm;按表 8319 及其表注說(shuō)明求得公法線0 長(zhǎng)度 =87.652, 跨齒數(shù) K=10,則公法線長(zhǎng)度偏差可表示為:kn 對(duì)齒輪傳動(dòng),檢驗(yàn)中心距極限偏差 ,根據(jù)中心距 a=200mm,10.26.587 f 由表查得 8365 查得 = ;檢驗(yàn)接觸斑點(diǎn),由表 8364 查得接觸f023. 斑點(diǎn)沿齒高不小于 40%,沿齒長(zhǎng)不小于 70%;檢驗(yàn)齒輪副的切向綜合公差 =0.05+0.072=0.125mm(根據(jù)表 8358 的表注 3,由表 8369,表3icF 59 及表 8360 計(jì)算與查取) ;檢驗(yàn)齒切向綜合公差 =0.0228mm, (根據(jù) 8icf 358 的表注 3,由表 8369,表 8359 計(jì)算與查?。?。對(duì)箱體,檢驗(yàn)軸線 的平行度公差, =0.012mm, =0.006mm(由表 8363 查?。?。xfyf 4. 確定齒坯的精度要求按表 8366 和 8367 查取。根據(jù)大齒輪的功率,確定大輪的孔 徑為 50mm,其尺寸和形狀公差均為 6 級(jí),即 0.016mm,齒輪的徑向和端面跳動(dòng)公差為 0.014mm。 5. 齒輪工作圖如下 圖 5 小 齒 輪1.61.608 (鋼筋彎曲機(jī)設(shè)計(jì)) 20 第 5 章 軸的設(shè)計(jì) 6.1 計(jì)算作用在軸上的力 大輪的受力: 圓周力 = =1F12dTN8.95.347 徑向力 1rtg726.00 軸向力 a 小輪的受力: 圓周力 = 2FNdT10246372 徑向力 =2rtg3968.02 軸向力 =a 5.2 計(jì)算支力和彎矩 1.垂直平面中的支反力: BR NlcFb 62213048.95)(21 lac 805.9.6104)(2 2. 水平面中的支反力: lcbFdcFdRrarfaB )(5.5.0 12211 = 343700496874.9 =2752.3N ldFadFbaR frfarc 11222 5.5. = 13748.9076.04.16398 =261N 3. 支點(diǎn)的合力 , :BRC (鋼筋彎曲機(jī)設(shè)計(jì)) 21 =BRNB684027562 RCC 18422 軸向力 Faa .908.5012 應(yīng)由軸向固定的軸承來(lái)承受。aF 4. 垂直彎矩: 截面 1wM1 mNaRB4.751.962 截面 C.36884 5. 水平彎矩: 截面 mNaRBw 27.305.49271 dFMBa 86.1.18.1 截面 mNCRw 2.5026 11 dFbaarBa =2752 74957265. =504N m 7. 合成彎矩: 截面 mNMww 30.8210956422 aa 75.72 截面 www 9.1368.4.1368 2222 mNMaa 4570 8. 計(jì)算軸徑 截面 (鋼筋彎曲機(jī)設(shè)計(jì)) 22 mTMdWw 5837.0.162417.0)(13322 截面 aw 745.98.3232222103741.5Fraar軸 的 受 力 和 結(jié) 構(gòu) 尺 寸 簡(jiǎn) 圖 5.3 對(duì)截面進(jìn)行校核 1. 截面校核 mNMw8203mNnPT 34725.91015.96633328dW390mT (由表 412 得)MPa351 . 齒輪軸的齒 k472.16.06470.19k (由表 4117 得)3. (由表 4117 得)2 (鋼筋彎曲機(jī)設(shè)計(jì)) 23 268.1k9.78.5492.1.3431 TWKMS8.1 S1.8 則 軸的強(qiáng)度滿足要求 2. 截面校核 mNMw136890mNnPT 34725.105. 6333.97242dW31.5mT (由表 412 得)MPa31 .0 齒輪軸的齒 k472.16.0647.19k (由表 4117 得)8.0 (由表 4117 得)0.3k271. (鋼筋彎曲機(jī)設(shè)計(jì)) 24 1976.52.13431 TWKMS8.1 S1.8 則 軸的強(qiáng)度滿足要求 3. 如下圖 6.3452圖 軸 第 6 章 主軸設(shè)計(jì) 6.1 計(jì)算作用在軸上的力 1.齒輪的受力: 扭矩 T T= mN9.105379.25 圓周力 = =1F1dT68.24 徑向力 1rtg.053.60 軸向力 a 2. 工作盤(pán)的合彎矩 Mt=(M0+M)/2/K=8739(Nm)式中,K 為彎曲時(shí)的滾動(dòng)摩擦系數(shù),K=1.05 按上述計(jì)算方法 同樣可以得出 50I 級(jí)鋼筋( b=450 N/mm2)彎矩所需彎矩:M t=8739(Nm) 由公式 Mt= 式中 F 為撥斜柱對(duì)鋼筋的作用力;F r為 F 的徑向分力;a 為 F 與sini0LFr (鋼筋彎曲機(jī)設(shè)計(jì)) 25 鋼筋軸線夾角。 08.43mL71690 則 NFr 工作盤(pán)的扭矩 mNLTr 1.270496.1086sin02 所以 T 齒輪能夠帶動(dòng)工作盤(pán)轉(zhuǎn)動(dòng) 6.2 計(jì)算支力和彎矩 1.垂直平面中的支反力: BR NlcFb 8.53421837.0245.6.2)(21 lac 1.6.1037)(2 2.水平面中的支反力: lcbFdFRrrfaB )(5.0 1211 = 8325.16.075.63468.2 =11198.37N ldFadFbaR frfarc 11222 .0 = 1833468.75.65.1608 =-3217.9N 3.支點(diǎn)的合力 , :BRC = N6.124073.98.53422 RCC .1222 軸向力 NFa68.1 應(yīng)由軸向固定的軸承來(lái)承受。a (鋼筋彎曲機(jī)設(shè)計(jì)) 26 4.垂直彎矩: 截面 1wM1 mNaRB 58.3247.6085342 截面 C9.1 5.水平彎矩: 截面 mNaRBw 3.68075.3.1981 dFMBa 3.1427.4.221 截面 mNCRw 7.65.0937 2 11 dFbaarBa =11198.37 3468.5.06.5.62 =-66.77N m 6.合成彎矩: 截面 mNMww 38.12.4517.0322 aa 7469 截面 www 5.23.4582.522 mNMaa 64 7.計(jì)算軸徑 截面 TdWw 60357.04.119827.0)(13322 截面 mMaw 85.33222 6.3 對(duì)截面進(jìn)行校核 1.截面校核 (鋼筋彎曲機(jī)設(shè)計(jì)) 27 mNMw3180mNnPT 1508.2430595.96633312dW340mT (由表 412 得)MPa351 . 齒輪軸的齒 k472.16.06470.19k (由表 4117 得)3. (由表 4117 得)268.k9.147.68.53431 TWKMS8.1 S1.8 則 軸的強(qiáng)度滿足要求 2. 如下圖 (鋼筋彎曲機(jī)設(shè)計(jì)) 28 圖 7 主 軸 第 7 章 軸承的選擇 7.1 滾動(dòng)軸承選擇. 1. 根據(jù)撥盤(pán)的軸端直徑選取軸承,軸承承受的力主要為徑向力,因而采用深溝球軸承,選定 為型號(hào)為 16008 的軸承,其中 16008 的技術(shù)參數(shù)為: d=40mm D=68mm B=9mm 2. 16008 軸承的配合的選擇: 軸承的精度等級(jí)為 D 級(jí),內(nèi)圈與軸的配合采用過(guò)盈配合,軸承內(nèi)圈與軸的配合采用基孔制, 由此軸的公差帶選用 k6,查表得在基本尺寸為 200mm 時(shí),IT 6DE 公差數(shù)值為 29um,此時(shí)軸得基本 下偏差 ei=+0.017mm,則軸得尺寸為 mm。外圈與殼體孔的配合采用基軸制,過(guò)渡配合,046.17 由此選用殼體孔公差帶為 M6,IT 6基本尺寸為 68mm 時(shí)的公差數(shù)值為 0.032mm,孔的基本上偏差 ES=-0.020,則孔的尺寸為 mm。02.58 中英文 薄壁模具成功的秘密 要求生產(chǎn)一種小的輕的零件,就要我們尋找一個(gè)能夠注出薄壁工件的注塑模具.現(xiàn)在,”薄壁” 在微電子方面通常定義為少于1m壁厚.在大的自動(dòng)化方面,”薄”可能意味是2mm左右.無(wú)論怎么 樣,越薄壁的地方,在生產(chǎn)過(guò)程中要求的變化就越多:更高的壓力和速度,更短的冷卻時(shí)間,和改注 射的方法和工作排列的方式.這些過(guò)程的改變?cè)谀>?機(jī)構(gòu)和零件設(shè)計(jì)中要引起一系列的思考 機(jī)械方面的思考: (鋼筋彎曲機(jī)設(shè)計(jì)) 29 標(biāo)準(zhǔn)的注塑機(jī)都能夠應(yīng)用于大多數(shù)的薄壁注射.新標(biāo)準(zhǔn)的注塑機(jī)的容量遠(yuǎn)超過(guò)了十幾年前的機(jī) 器.先進(jìn)的材料和技術(shù),高超過(guò)的設(shè)計(jì)水平大大的增加了薄壁零件對(duì)標(biāo)準(zhǔn)注塑機(jī)的要求. 但是當(dāng)薄壁不斷的收縮,要求有更大的高速帶來(lái)的特殊壓力.例如微電子零件的壁厚少于1m, 填充時(shí)間要少于0.5秒和注射壓力大于30000psi是不罕見(jiàn)的.為薄壁注射而設(shè)計(jì)的水力機(jī)械通常 儲(chǔ)蓄的能量既用于注射又用于夾緊循環(huán).純電的和水電混合的機(jī)械的出現(xiàn)往往能夠提供更高的速 度和更大的壓力. 為了抵抗高壓,在注射范圍內(nèi),夾緊里應(yīng)該是在5-7噸每平方英寸.另外,連接桿到壓盤(pán)有助于 減少?gòu)澢?當(dāng)墻壁厚度減少,注射壓力上升.薄壁注射機(jī)的連接桿到壓盤(pán)厚度的距離通常是2:1,或 者是更低的比率.而且,隨著壁厚的變薄,注射速度的閉環(huán)的控制,轉(zhuǎn)移壓力和其他的過(guò)程變量能 在高速度和壓力擁包的情況下幫助控制充滿型腔. 當(dāng)它開(kāi)始注射容量時(shí),大量的塑料裝入型腔太多了。我們建議注射40%70%的型腔容量到模 的型腔里面。在薄壁注射的應(yīng)用中經(jīng)常能見(jiàn)到的大大地減少的總循環(huán)周期時(shí)間可以使把最小注 射量降低到型腔容量的20%30%成為可能,但是 ,只有在徹底了解零件因材料變化而引起的其 特性的變化的情況下才能實(shí)現(xiàn)。用戶必須小心,小的注射量可能引起材料性能的降低,因此, 意味著更長(zhǎng)的只社時(shí)間。 模子:本身的精度 速度是薄壁模能否做成功的關(guān)鍵的因素之一。更快的折射速度和更高的注射壓力把溶解的熱 塑性的材料在一個(gè)足夠的速度下注入狹窄的型腔以避免其凝固。如果標(biāo)準(zhǔn)零件注射時(shí)間在2sec 內(nèi),如果它的厚度減少25%那么充型時(shí)間就能減少50%,即1sec鐘就能充滿型腔。 薄壁模具的好處之一是當(dāng)壁厚減少時(shí),需要冷卻的材料也相應(yīng)的減少。隨著主要壁厚的減少, 循環(huán)周期能減少50%,熔化狀態(tài)下的系統(tǒng)的小心的管理能使分流道和主流道縮小循環(huán)周期的時(shí)間。 熱的分流道和主流道通常用于薄壁零件的注塑以利于把周期時(shí)間減少到最小。 模具的材料也應(yīng)該被檢查。P20鋼在傳統(tǒng)的應(yīng)用中廣大被使用,但是,由于薄壁注射的壓力 不斷的增大,模具也必須做得更堅(jiān)固。H-13鋼和其它的堅(jiān)韌的鋼為薄壁的工具提供了額外的安 全保證。(另外,如果可能,你也可以選用模具的材料這 可以使在高速度注入型腔的時(shí)候,不 會(huì)加快模具的磨損。) 不過(guò),比標(biāo)準(zhǔn)的零件來(lái)說(shuō)精密的模具可能要多花費(fèi)30%40%??墒牵a(chǎn)率成倍提高可以彌 補(bǔ)這多花費(fèi)的部分。實(shí)際上,薄壁的注塑的方法是經(jīng)常用于省錢(qián)途徑之一。100%的生產(chǎn)率的提 高意味著要做的模具就更少因此在生產(chǎn)程序中節(jié)省更多的錢(qián)。 這里是一些薄壁的工具設(shè)計(jì)上的技巧: 1.對(duì)于主要薄壁工作的應(yīng)用,一般用硬度大于鋼p20的材料,尤其是要求有大的磨損和腐蝕的時(shí) 候。H-13和D-2鋼就是最常用的兩棲種材料著之一。 2.模具的鎖定有時(shí)是彎曲的不對(duì)齊。 3.型腔孔的型心能有助于減少型心在轉(zhuǎn)換時(shí)的破損。 4.在型腔和主流道下面用更重的支持板(通常是23英寸厚)和較重的導(dǎo)柱(一般是增加0.005 英寸) 5.比傳統(tǒng)的模具使用更大更多的推桿,以減少推桿的壓力 6.考慮滑塊和導(dǎo)套的放置。 注射模具避免在復(fù)合材料上的缺陷 兩鐘或更多材料的注射模需要一個(gè)兩個(gè)澆口澆鑄方式或同時(shí)技術(shù)。不管使用程序如何,造模 者在達(dá)到高質(zhì)量塑件方面面對(duì)相同的挑戰(zhàn)。任何多種材料成型過(guò)程的三個(gè)共同的問(wèn)題是不足的 聚合體的化學(xué)和機(jī)械結(jié)合,一個(gè)或更多成分的不完全填補(bǔ),和一個(gè)更多的成分的“flash”。 這些情況能發(fā)生是否材料組合加強(qiáng)的和沒(méi)被加強(qiáng)的,實(shí)心的和起泡的,剛硬的和軟的,原料 (鋼筋彎曲機(jī)設(shè)計(jì)) 30 和再研磨,有色素和無(wú)色素,等等。 多種材料模和它的問(wèn)題及問(wèn)題的解決是復(fù)雜的題目,不能在簡(jiǎn)短的文章里徹底探討清楚,接 下來(lái)說(shuō)明相關(guān)變量的范圍,以及對(duì)一些比較重要的問(wèn)題作簡(jiǎn)單的介紹。 時(shí)間和溫度 引起材料之間結(jié)合不足的原因與材料注射時(shí)間和第二材料熔合時(shí)第一材料的溫度有關(guān)。第一材 料的過(guò)分冷卻往往使熔合變?nèi)?。另外,第一次注射必須足夠冷卻才能不使第二次注射時(shí)不引起 變形和錯(cuò)位。如果第一次材料仍然很軟,而第二次注射來(lái)得太快,答二材料將在第一材料是形 成縮孔和飛邊。引起“流涎”現(xiàn)象。 在兩個(gè)注射機(jī)上的流動(dòng)材料(在一個(gè)注射機(jī)上第一次注射,接著把它插入到另一個(gè)注射機(jī)上) 不易產(chǎn)生和旋轉(zhuǎn)桌面的兩個(gè)澆口的注射機(jī)上的流動(dòng)材料一樣好的結(jié)合。甚至當(dāng)用相容材料時(shí)兩 次注射之間延長(zhǎng)的時(shí)間相對(duì)要長(zhǎng),并且地一槍可能會(huì)太冷。一般認(rèn)為一個(gè)比較高塑件溫度有更 好的化學(xué)/機(jī)械結(jié)合。如果當(dāng)?shù)谝淮巫⑸滢D(zhuǎn)移到第二個(gè)模具上時(shí)吸附了一些灰塵,那么將會(huì)對(duì)結(jié) 合有很大的影響。一些材料往往很自然比其它材料粘貼的更好。為了overmolding ,樹(shù)脂供應(yīng)者 特別是TPES的制造者通過(guò)提高對(duì)其它聚合物的粘附范圍努力地將某一等級(jí)最佳化。 添加劑和色素也會(huì)影響結(jié)合。在第一材料里面的玻璃纖維能提高與第二材料的結(jié)合質(zhì)量。這 些材料表面上的纖維能促進(jìn)與第二注射材料的機(jī)械結(jié)合。 注意包含有像滑石或碳酸鈣一樣的填充物的材料應(yīng)被足夠烘干,因?yàn)檫@些填充物含有很多能 是結(jié)合減弱的濕氣。 質(zhì)量影響元素 為了防止任一材料的沒(méi)填充和裝得太多(和飛邊),機(jī)器的從注射到 注射的準(zhǔn)確性明顯的 是一個(gè)關(guān)鍵的因素。一般建議注射量少于0.3%到0.5%。有注射速度閉環(huán)控制的注射機(jī)是最好的 選擇。 第二是選擇一個(gè)有多種材料塑件成型經(jīng)驗(yàn)的模具制造者。如果開(kāi)始就有很好的模具設(shè)計(jì),這 樣能省掉很多花費(fèi)。例如,它有助于增加那些有通過(guò)用undercuts或相似設(shè)計(jì)獲得 的機(jī)械結(jié)合 的材料之間的熱化結(jié)合。 確保多孔模具平衡好,熱流動(dòng)的 maniflod也必須平衡好,而且下降的數(shù)字和大小一定對(duì)低壓的 填充物是充分的。 模具的溫度是另一個(gè)重要因素。當(dāng)有核心lifter的移動(dòng)模具的第二次注射時(shí),溫度準(zhǔn)確控 制是強(qiáng)制的。因?yàn)殇摶蜾摵辖鹩胁煌?的熱膨脹,所以不正確的溫度會(huì)引起lifter的契入和堵塞。 為了獲得好的多種材料塑件成型,操作者必須有很好的訓(xùn)練。 當(dāng)塑件制造結(jié)果不好時(shí), 錯(cuò)誤的制造環(huán)境經(jīng)常是罪魁禍?zhǔn)?。因?yàn)樗?復(fù)雜性,所以如果當(dāng)事情出錯(cuò)時(shí),也只有懂得程序 的人才被允許去糾正。 獲得材料間好的結(jié)合也經(jīng)常取決于當(dāng)?shù)诙牧献⑸鋾r(shí)第一材料的溫度 Secret of successful thin-wall molding Demands to create smaller, lighter parts have made thin-wall molding one of the most sought after capabilities for an injection molder. These days ,”thin-wall” is generally defined by portable electronics parts having a wall thickness less than 1mm . for large automotive parts , “thin” may mean 2 mm . In any case, thinner wall sections bring changes in processing requirements: higher pressure and speeds, faster cooling times, and modification to part-ejection and gating arrangements .These process changes have in turn prompted new considerations in mold ,machinery ,and part design Machinery considerations (鋼筋彎曲機(jī)設(shè)計(jì)) 31 Standard molding machinery can be used for many thin-wall applications. Capabilities built into newer standard machines go well beyond those of 10 years ago. Advances in materials, gating technology and design further expand the capabilities of a standard machine to fill thinner parts . But as wall thicknesses continue to shrink, a more specialized press with higher speed and pressure capabilities may be required. For example, with a portable electronics part less than 1 mm thick, fill times of less than 0.5 sec and injection pressures greater than 30,000psi are not uncommon. Hydraulic machines designed for thin-wall molding frequently have accumulators driving both injection and clamping cycles. All-electric and hybrid electric/hydraulic models with high speed and pressure capabilities are starting to appear as well. To stand up to the high pressures involved, clamp force should be a minimum of 5-7tons/sq in. of projected area. In addition,extra-heavy platens help to reduce flexure as wall thicknesses drop and injection pressures rise. Thin-wall machines commonly have a 2:1 or lower ratio of tiebar distance to platen thickness. Also, with thinner walls, closed- loop control of injection speed, transfer pressure,and other process variables can help to control filling and packing at high speeds and pressures. When it comes to shot capacity, large barrels tend to be too large. We suggest you aim for a shot size of 40% to 70%of barrels capacity . The greatly reduces total cycle time seen in thin-wall applications may make it possible to reduce the minimum shot size to 20%-30% of barrel capacity, but only if the parts are thoroughly tested for property loss possible material degradation. Users must be careful, as small shot sizes can mean longer barrel residence times for the material ,resulting in property degradation . Molds: make em rugged Speed is one of the key attributes of successful thin-wall molding. Faster filling and higher are required to drive molten thermoplastic material into thinner cavities at a sufficient rate to prevent freeze off. If a standard part is filled in 2 sec, then a reduction in thickness of 25%potentially can require a drop in fill time of 50%to just 1 sec. One benefit of thin-wall molding is that as wall sections drop, there is less material to cool. Cycle times can drop by 50%with aggressive wall-thickness reduction. Careful management of the melt-delivery system can keep runners and sprues from diminishing that cycle-time advantage. Hot runners and heated sprue bushings are often used in thin-wall molding to help minimize cycle time. Mold material should be reviewed too. P20 steel is used extensively in conventional applications, but due to the higher pressures of thin-wall molding, molds must be built more robustly. H-13 and other tough steels add an extra degree of safety for thin-wall tools.If possible, you will also want to select a molding material that doesnt accelerate mold wear when injected into the cavity at high speeds. However, robust tools cost money-possibly even 30% to 40%more than a standard mold. Yet the cost is often offset by increased productivity. In fact, the thin-wall approach is frequently used to save money on tooling. A 100% increase in productivity can mean that fewer molds to be built, thereby saving money over the life of a program. Here are some more tips on tool design for thin walls: For aggressive thin-wall applications, use steel harder than P20,especially when high wear and erosion are expected. H-13 and D-2 steels have been successful in gate inserts. Mold interlocks sometimes can st
收藏