螺旋紙管卷管機設(shè)計
螺旋紙管卷管機設(shè)計,螺旋紙管卷管機設(shè)計,螺旋,紙管,卷管機,設(shè)計
黃河科技學(xué)院畢業(yè)設(shè)計(文獻翻譯) 第 14 頁
單齒齒輪傳動中輪齒負載的動力學(xué)研究
W.Nadolski,Warsaw
Archive of Mechanics 61(1991)523-531
摘要:此文中對單齒齒輪傳動中輪齒負載的動力學(xué)研究分析中提及了一種離散—連續(xù)的分析模型,在此模型中恒定的等效嚙合硬度和由轉(zhuǎn)矩引起的可估算的軸變形均被考慮到計算當中。在分析討論中應(yīng)用到了波形圖法,即利用了運動方程式而得到的波形圖。數(shù)值計算都集中在確定輪齒上的動力載荷波動的波幅大小,計算時還要考慮到在第一第二共振區(qū)域外部激發(fā)作用下的頻率變化。
1 緒論
在參考文獻[1,2]中剛性齒單齒輪傳動的動力學(xué)研究是在離散—連續(xù)的模型中被執(zhí)行的,此文中也考慮應(yīng)用一種相似的模型,然而此處相嚙合齒的齒廓等效剛度可被假設(shè)為3到6的常數(shù),在科技文獻中齒輪傳動的研究大多依靠在一到多個自由度條件下進行離散分析(見參考文獻 [7,8])。
此文中的離散—連續(xù)模型由兩個可測得軸和四個在考慮旋轉(zhuǎn)軸時質(zhì)量慣性矩為常數(shù)的剛體組成,這樣的齒輪傳動都要考慮由于撓度作用消除支撐軸承的變形和軸系大體上的扭轉(zhuǎn)變形。系統(tǒng)中的剛體所受外力矩是被隨機加載的。阻尼的作用也被考慮在內(nèi),主要依靠當量的粘滯型外阻尼和當量的福哥特型內(nèi)阻尼。本研究中還會運用利用波形圖法來解運動方程式的方法,這種方法可以用來測定在齒輪齒的位移,張力和速度處于穩(wěn)定狀態(tài)或者瞬時狀態(tài)下,輪齒上動載荷的變化。為了挑選描述單齒齒輪傳動各種機械性能的參數(shù)而進行的數(shù)值計算,目標主要集中在測定齒輪齒上動載荷的振幅大小與處在第一第二共振區(qū)域的外部激發(fā)的頻率大小的關(guān)系。
2 假設(shè)和控制方程
圖1. 單齒齒輪傳動模型
假設(shè)這個單齒齒輪傳動的離散—連續(xù)模型有平行軸,圖1中齒輪軸1和2的性能用以下參數(shù)描述,剪切彈性模量G,極慣性矩Ii,密度和長度(i=1,2),輪齒4,5和剛體3,6的質(zhì)量慣性矩分別為(i=3,4,5,6)。X軸平行于齒輪軸,而且它的原點在未受干擾前提下與齒輪軸1的左端點的位置一致。在t=0時齒輪軸橫截面的位移和速度可以假設(shè)等于0,這里分析時不包括一些細微因素的影響,例如制造加工時造成的齒形誤差,齒面磨損,離線的運動接觸,齒間潤滑油的影響等,這些因素在齒輪傳動的運動分析中通常被忽略不計。在這些假設(shè)下這個單齒齒輪傳動的控制方程將會是線性的。
假設(shè)在運動過程中輪齒不分離,而且在橫截面x=L1處的軸位移滿足關(guān)系式(1)
(1)
其中R4、R5分別齒輪4和5的節(jié)圓半徑,θi(x,t)分別為齒輪軸1和2的角位移。
輪齒上的動載荷可由下式表達
(2)
其中Km為等效嚙合剛度,Cm為嚙合阻尼系數(shù),α為與節(jié)圓半徑R4、R5對應(yīng)的壓力角。需要指出的是在參考文獻[1,2]中(1)式等于0,描述無齒形誤差的動載荷的公式(2)是從參考文獻[8]中得到的。
在以上假設(shè)條件下,測定公式(2)中出現(xiàn)的位移和速度的問題最終歸結(jié)為解下面這個經(jīng)典的波動方程
(3)
初始條件為
(4)
邊界條件為
(5)
其中M(t)為加載在剛體3上的外激勵,(i=3,4,5,6)和(i=1,2)分別為外阻尼和內(nèi)阻尼系數(shù),出自參考文獻[1,2]。
邊界條件(5)和參考文獻[1,2]中的參照條件是相似的,他們之間的區(qū)別是,在條件(5)中動載荷依照(2)式得出,并依靠等效嚙合剛度和嚙合阻尼系數(shù)。如果(1)式等于0則文獻[1]中的邊界條件和此文中的邊界條件是相同的。
在緒論上的無量綱數(shù)為式(6)如下
關(guān)系式(3)—(5)為
(7)
(8)
其中θ0為一個等于常數(shù)的角位移,為方便分析此模型中的圍護邊界被省略。
式(7)的解代入到初始條件(8)中可以得到以下公式(10)
(10)
其中這些表示波形的未知因素和是由外部力矩M(t)引起是的,齒輪軸一和二間的傳動方向一致并分別與x軸方向垂直。自變量和在計算中已被考慮在內(nèi),第一次擾動在齒輪軸1中出現(xiàn)在t=0時x=0處,在齒輪軸2中出現(xiàn)在t=1時x=1處。變量和是連續(xù)的而且對于負的自變量它們都等于0。
把式(10)代入邊界條件(9)可以得到對于和的微分方程。從式(10)的形式可知道它遵循的是在不同時刻的瞬時狀態(tài)和不等于0,在計算中為方便操作在所有函數(shù)中引入常規(guī)自變量z。在參考文獻[1,2]中對剛性齒齒輪傳動的研究中,每個等式中從邊界條件獲得的最大的自變量也是用z表示,在這種情況下當齒輪齒是柔性時,適用的方程式會稍微的更加復(fù)雜些,因為這些函數(shù)f2,g1與實變量z,z2=z+2都不是相互獨立的,這種情況下,把式(10)代入式(9),我們可以得到下式
其中
(12)
微分方程(11)可以依靠有限差分法求解,當z≥0時可以從式(11)中求得函數(shù)f1,f2,g2的值,當z2=z+2≥0可以從式(11)中求得時函數(shù)g1的值。對于負的自變量它們卻都等于0,所以從式(11)3可得它遵循的是當z2=z+2<2時g1(z2)≡0.雖然函數(shù)f2(z)和g1(z+2)都不是相互獨立的,但是依靠恰當函數(shù)已知的函數(shù)值,運用有限差分法可以推導(dǎo)出這些函數(shù)的表達式。這些表達式將在附錄中給出。
3 數(shù)值計算結(jié)果
在數(shù)值計算中下列單齒齒輪傳動的參數(shù)都是假設(shè)的,假設(shè)如下:
量綱量
無量綱量
該文分析過程中包括以下無量綱量:當齒高等于0.10m,嚙合阻尼系數(shù)Cm=Di1時,嚙合剛度=0.005 859,0.018528,0.0585(單位分別為)參見參考文獻[9—11]。
外部力矩M(t)是隨機得到的,它可以是規(guī)則的或不規(guī)則的,周期的或非周期的。此處假定有下式得出
(14)
其中, 是無量綱的外激勵頻率。
目前考慮的重點集中在,在考慮頻率處在第一第二共振區(qū)域穩(wěn)定狀態(tài)下的外激勵的作用下,如何測定齒輪齒上的動載荷的振幅。
由(2)式給出的動載荷的表達式,是依靠等效嚙合剛度Km, 嚙合阻尼系數(shù)Cm和相對位移,及相對速度而得到的。阻尼對,的影響,Km、 Cm對動載荷的影響,分別在圖2,3,4中顯示出來。
圖2.振幅—頻率對,的影響曲線
圖2所示振幅—頻率對相對位移的影響曲線是連續(xù)曲線,對相對速度的影響曲線點曲線。這些曲線是運用式(11)利用參數(shù)(13)和以下附加參數(shù)計算得到的。
附加參數(shù)為
外阻尼對該研究中函數(shù)的作用是可估測的,但是內(nèi)阻尼的影響是完全可以忽略的。圖2中對于每條有確定的Di1值的曲線都符合系數(shù)Di2的三個值,所以內(nèi)阻尼的影響是不可測得的,進一步的數(shù)值計算擬定內(nèi)阻尼系數(shù)D12=D22=0.01外阻尼系數(shù)Di1=0.05(i=3,4,5,6)。
圖3.Km—動載荷振幅關(guān)系圖 圖4.Cm—動載荷振幅關(guān)系圖
圖3繪制的圖形可知,動載荷的振幅在Cm=0時,對于不同的等效嚙合剛度=0.005859,0.018528,0.05859所得的圖形是規(guī)則的,也就是說在第一共振區(qū)里載荷的最大振幅會隨著Km的增大而升高,圖4,5,6,7和9中動載荷的振幅—頻率曲線都是在Km=0.018528的條件下繪制的。
嚙合阻尼系數(shù)Cm對動載荷的影響在本項研究中分別取值為Cm=0,
0.01,0.05,0.1。圖4中遵循忽略嚙合阻尼系數(shù)Cm影響,除了處在第一諧振區(qū)鄰域內(nèi)的情況。
此項研究中的單齒齒輪傳動由式(13)中的多個參數(shù)表現(xiàn)出來,例如參數(shù)K1,K2和A6對動載荷P的振幅—頻率曲線的作用在圖5,6和7中表現(xiàn)出,圖6中遵循的是載荷P的最大值隨處于第一共振區(qū)域的自變量K2的值的升高而升高。這樣的規(guī)律在圖5和7是沒有表現(xiàn)的,圖5和7中分別表現(xiàn)的是不同的K1和A6對振幅—頻率曲線的作用。
圖5.不同K1對動載荷振幅的影響 圖6. 不同K2對動載荷振幅的影響
從圖2-7可以發(fā)現(xiàn)它們都遵循這樣一個規(guī)律,動載荷P的最大振幅出現(xiàn)在第一共振區(qū),當外激勵的頻率等于自激振動的第一頻率ω1時。這樣進一步的數(shù)值計算中,將對共振振幅進行討論,依靠A6的作用挑選出適當?shù)腒m,K1和K2,這些數(shù)據(jù)可用于測定=ω1時動載荷的振幅。
在忽視阻尼和邊界條件(9)中外力矩作用的情況下,運用分離變量法求解式(7),可以獲得自激振動的第一頻率及其次的頻率。
在圖8,9中可見參數(shù)Km,K1和K2對動載荷P共振振幅的影響,其中A6的變化范圍是從0.03到0.77。圖8中繪制出了對于各個不同的Km=0.005859,0.018528,0.05859的適當?shù)膱D表,圖8中各曲線的規(guī)律是,隨著參數(shù)A6的升高動載荷的共振振幅先單調(diào)升高達到最大值然后單調(diào)下降。對于確定的A6共振振幅隨著Km的升高而升高,同樣的結(jié)論也可以從圖9中得到,圖9表現(xiàn)了當A6升高時不同的指示參變量對K1,K2所得到的共振振幅變化曲線,其中常數(shù)K1的值由d1=0.06m,0.10m,…,0.22m決定,常數(shù)K2的值由d2=0.09m,0.15m,…,0.33m決定,d1,d2分別為齒輪軸1,2的直徑。
圖7. A6=0.03,0.15,0.75時動載荷振幅變化
圖8. Km對動載荷共振振幅的影響 圖9. K1和K2對動載荷共振振幅的影響
4 最終備注
本文介紹的事項理論上有這樣一個性質(zhì),它們都涉及到了單齒齒輪傳動的離散—連續(xù)模型,此模型具有不變的等效嚙合剛度并且齒輪軸是扭轉(zhuǎn)變形可稱的。此項研究中還運用到了波形法。數(shù)值計算的結(jié)果也給出了關(guān)于這些參變量在研究過程中的影響的信息,描述了這種單齒齒輪傳動及作用在齒輪齒上的動載荷的振幅。實際情況下,這些已得到的信息對設(shè)計單齒齒輪傳動是很有用的,其中等效嚙合剛度可以假定為常數(shù)。
附錄:函數(shù)g1(z2)和f2(z)的測定
函數(shù)g1(z2)和f2(z)都是由式(12)中的第三第四等式?jīng)Q定的,運用有限差分法給出下列等式
定義
g1(z2)和f2(z)的表達式
參考文獻
收藏
編號:20935521
類型:共享資源
大?。?span id="0802qsb" class="font-tahoma">2.85MB
格式:ZIP
上傳時間:2021-04-21
40
積分
- 關(guān) 鍵 詞:
-
螺旋紙管卷管機設(shè)計
螺旋
紙管
卷管機
設(shè)計
- 資源描述:
-
螺旋紙管卷管機設(shè)計,螺旋紙管卷管機設(shè)計,螺旋,紙管,卷管機,設(shè)計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學(xué)習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。