《麥克斯韋方程組00B》由會(huì)員分享,可在線閱讀,更多相關(guān)《麥克斯韋方程組00B(47頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、主講:李龍 DB tBE tDJH 0 VSSl Sl S vdsdnD sdnB sdtBldE sdtDJldH 0 Sl i SdtBldE iE tB左旋 SL d SdtDldH dHtD右旋 n Maxwell方程組的邏輯關(guān)系n本構(gòu)關(guān)系n時(shí)變電磁場(chǎng)的邊界條件n坡印亭能量定理 n電磁位 BE t 0B ( ) 0Bt 0 ( ) ( )BE t DH J t 0 ( ) ( )DH J t ( ) 0J Dt J t J t 0 0 sin( )yH E t zt 0 cos( )xE a E t z 0 0 0 x y zxa a a HE x y z tE 00 sin ( )y
2、 x x y y z za E t za H a H a Ht 00 xzHH 00 cos( )y EH a t z H 00( )D E PB H MJ E D EB HJ E ( )F q E v B ( )f E v B E J B F ( ) ( ) ( )n n F n n F F n n ( ) ( ) n tF n n F n n F F n Ft F A F t n t nA A A ( ) ( )t n t n t nA A F F t nF F F ( ) ( ) ( ) ( )t t n t n t n t t n n t nA A A A F F t t nt n n
3、 t tA FA A F nF1 F2 S h 1 2 2 1 ( ) ( )S D dS D Sn D n S D D n S V Sh SShdVQ 0lim2 1 ( ) Sn D D 2 1n n SD D nn DD 21 nn EE 2211 2 1 ( ) 0n B B nn BB 21 nn HH 2211 n b lh l l b n L S BE dl dst 0 lim 0S hB Bds bh lt t 2 1 ( ) 0n E E lEEnblEEnb lEElllEllEldEl )()( )( )( 1212 1221 ( )L S DH dl J dst 0 l
4、im 0S hD Dds bh lt t lHHnblHHnb lHHlllHllHldHl )()( )()( 1212 1221 0lim SS hJ dS J bh l J b l 2 1 ( ) Sb n H H l b J l 2 1 ( ) Sn H H J 1 2t t SH H J 1 2t tH H 2211 tt BB 0 0 12 12 12 12 BBn JHHn DDn EEn sS n理想介質(zhì)的邊界條件理想介質(zhì):=0無歐姆損耗的簡單介質(zhì)理想介質(zhì)表面無自由面電荷和自由面電流 1 21 21 21 2 ( ) 0 ( ) 0 ( ) 0 ( ) 0n H Hn E En
5、 B Bn D D 1 21 21 21 2 0000t tt tn nn nH HE EB BD D 0 0 SSn H Jn En Bn D 0( , ,0, ) sin cos( )xH x y t a H ax t ay 00 sin cos( ) sin cos( )S z xyJ n H a a H ax t aya H ax t ay n St SJ t ),()cos(sin )sin(sin)cos(sin0 00 yxcaytaxaH aytaxaHaytaxHytS S 0 00( , ,0, ) sin cos( ) cos ( , ,0, ) sin cos( ) c
6、os zz aHD x y t a ax t ay ayaHE x y t a ax t ay ay 8 81 60cos(15 10 5 ) 20cos(15 10 5 )( / )xE a t z t z V m 82 cos(15 10 5 )( / )xE a A t z V m 81 82 80 cos(15 10 ) cos(15 10 )xxE a tE a A t mVA /80 y E HE a z t 8 81 0.1592 cos(15 10 5 ) 0.0531 cos(15 10 5 )( / )yH a t z t z A m 81 2 0.106 cos(15 1
7、0 )yH H a t 82 0.1061 cos(15 10 50 )( / )yH a t z A m ,E H VP J EdV DJ H t ( )V V DJ EdV E H E dVt ( ) ( ) ( )E H H E E H BE t ( ) V V B DJ EdV H E E H dVt t ( ) A BA B B At t t ( ) 2 AA A At t ,D E B H 1( ) ( )2 2B HH H H H B Ht t t t 1( ) ( )2 2D EE E E E D Et t t t ( ) ( )S V B DE H dS H E J E dV
8、t t 1 1( ) 2 2S V VE H dS B H D E dV J EdVt EDwe 21 HBwm 21 S E H 1 1( ) 2 2S V VE H dS B H D E dV J EdVt 1 1( ) ( ) 2 2 S V VE H dS E H dV B H D E J E dVt SdHES HES S 1 1 02 2E D B Ht ( ) 0S E H dS HES 1 1 02 2E D B Ht ( )S VE H dS J EdV HES 1 1( ) 2 2S V VE H dS B H D E dV J EdVt ( ) SP E H dS HES b2zJ IE a b 2IH a b EH2 bIaJ z 22 3 2r IS E H a b 2 22 3 22 22 rS SS dS S a dSI lbl Ib bI R bS ( )2 lrD a a r br ba E dr U ( )1 rUE a a r bbr n a 2IH ar 2 2 1 zUIS E H abr na baS UIrdrabnrUIdSSP 212 2 n P.187 5.5, 5.8, 5.9