喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請放心下載,文件全都包含在內(nèi),有疑問咨詢QQ:1064457796
哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計(jì))
某乘用車齒條助力式轉(zhuǎn)向系統(tǒng)設(shè)計(jì)
摘 要
汽車電動助力轉(zhuǎn)向系統(tǒng)是一種新型的汽車動力轉(zhuǎn)向系統(tǒng),是汽車領(lǐng)域的關(guān)鍵技術(shù),具有節(jié)約燃料、有利于環(huán)境、可變力轉(zhuǎn)向、易實(shí)現(xiàn)產(chǎn)品模塊化等諸多優(yōu)點(diǎn)。本文以“某乘用車齒條助力式轉(zhuǎn)向系統(tǒng)設(shè)計(jì)”為研究課題,對該轉(zhuǎn)向系統(tǒng)進(jìn)行了詳細(xì)的研究。
本文以某款乘用車的齒條助力式轉(zhuǎn)向系統(tǒng)為研究對象,首先分析了本課題研究的目的和意義,經(jīng)過搜集大量資料并作分析后歸納出轉(zhuǎn)向系統(tǒng)的特點(diǎn)和國內(nèi)外發(fā)展?fàn)顩r。其次對其組成和工作原理進(jìn)行了闡述,分析了電動助力轉(zhuǎn)向系統(tǒng)的工作原理和類型,并對其關(guān)鍵部件進(jìn)行解釋說明,分析了其助力特性。然后重點(diǎn)進(jìn)行了轉(zhuǎn)向系統(tǒng)的結(jié)構(gòu)參數(shù)設(shè)計(jì)計(jì)算,確定了轉(zhuǎn)向系計(jì)算載荷,分析了轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求,并對關(guān)鍵部件進(jìn)行了結(jié)構(gòu)設(shè)計(jì)。接著對轉(zhuǎn)向梯形進(jìn)行了優(yōu)化設(shè)計(jì),給出了優(yōu)化結(jié)果,并做了分析驗(yàn)證。最后對每個部件進(jìn)行了三維實(shí)體建模,并對關(guān)鍵受力部件轉(zhuǎn)向節(jié)進(jìn)行了有限元分析,繪制了轉(zhuǎn)向傳動系統(tǒng)、轉(zhuǎn)向操縱系統(tǒng)及主要零部件的工程圖。
主要方法和理論采用汽車設(shè)計(jì)的經(jīng)驗(yàn)參數(shù)和大學(xué)所學(xué)機(jī)械設(shè)計(jì)的課程內(nèi)容進(jìn)行設(shè)計(jì),并做了歸納和總結(jié)。
關(guān)鍵詞:轉(zhuǎn)向系統(tǒng);電動助力轉(zhuǎn)向系統(tǒng);齒輪齒條轉(zhuǎn)向器; 優(yōu)化設(shè)計(jì)
Design of a Passenger Car With Rack Power steering System
Abstract
Automotive electric power steering system is a new type of vehicle power steering system, it is the key technology in the automobile field, which can save fuel. It is beneficial to the environment, the variable power steering, easy to achieve modular products etc. In this paper, system of a passenger vehicle rack power steering as the research subject, the steering system is studied in detail.
In this paper, a passenger car rack power steering system is regarded as the research object, first it analyzes the purpose and significance of this research and summarizes the steering system characteristics and development status in domestic and abroad through data collection and analysis . Secondly it analyzes the working principle and the type system, and make explanation of its key component, and analyzes its characteristic. Then we calculated the structure parameters of the system design of steering, the steering system load calculation, analysis to the system design requirements, and the key components of the structural design. Then the optimization design of steering trapezoid, give out the optimization results, and make analysis and verification. At the end of each components of the three-dimensional entity modeling, and the key parts of the steering knuckleis analyzed by finite element analysis, draw the steering system, the steering system, and the main components of the engineering drawings.
The main method and theory with experience in automotive design parameters and the university curriculum design of mechanical design, and make a sum up .
Key Words:Steering System ,Electric Power Steering , Rack and pinion steering, Optimization
目 錄
摘 要 I
Abstract II
第 1 章 緒論 1
1.1 本課題研究的目的和意義 1
1.1.1 轉(zhuǎn)向系統(tǒng)簡介 1
1.1.2 轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求 1
1.1.3 研究的目的和意義 2
1.2 國內(nèi)外研究現(xiàn)狀概述 2
1.2.1 EPS與其他系統(tǒng)比較 2
1.2.2 EPS的特點(diǎn) 3
1.2.3 國外研究現(xiàn)狀 4
1.2.4 國內(nèi)外研究現(xiàn)狀 4
1.3 本文主要研究內(nèi)容 5
1.4 本章小結(jié) 5
第 2 章 電動助力轉(zhuǎn)向系統(tǒng)的總體組成 6
2.1 電動助力轉(zhuǎn)向系統(tǒng)的機(jī)理及類型 6
2.1.1 電動助力轉(zhuǎn)向系統(tǒng)的機(jī)理 6
2.1.2 電動助力轉(zhuǎn)向系統(tǒng)的類型 7
2.2 電動助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件 9
2.3 電動助力轉(zhuǎn)向的助力特性 10
2.4 本章小結(jié) 10
第 3 章 齒條助力轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)參數(shù)設(shè)計(jì) 11
3.1 設(shè)計(jì)目標(biāo)車輛主要參數(shù) 11
3.2 轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)參數(shù)設(shè)計(jì) 11
3.2.1 對動力轉(zhuǎn)向機(jī)構(gòu)的要求 11
3.2.2 齒輪齒條轉(zhuǎn)向器形式的選擇 11
3.2.3 轉(zhuǎn)向系計(jì)算載荷的確定 12
3.3 轉(zhuǎn)向系統(tǒng)設(shè)計(jì)要求 14
3.4 EPS主要部件的設(shè)計(jì) 15
3.4.1 齒條的設(shè)計(jì) 15
3.4.2 齒輪軸的設(shè)計(jì) 18
3.4.3 轉(zhuǎn)向橫拉桿及其端部的設(shè)計(jì) 19
3.4.4 齒條調(diào)整裝置的設(shè)計(jì) 19
3.5 本章小結(jié) 20
第 4 章 轉(zhuǎn)向梯形的優(yōu)化設(shè)計(jì) 21
4.1 轉(zhuǎn)向梯形數(shù)學(xué)模型推導(dǎo) 21
4.1.1 理想的左右轉(zhuǎn)向輪轉(zhuǎn)角關(guān)系 21
4.1.2 實(shí)際的左右轉(zhuǎn)向輪轉(zhuǎn)角關(guān)系 22
4.2 優(yōu)化目標(biāo)函數(shù)和約束條件的確定 24
4.2.1 優(yōu)化目標(biāo)函數(shù)的確定 24
4.2.2 優(yōu)化約束條件的確定 24
4.3 優(yōu)化結(jié)果及驗(yàn)證 25
4.4 本章小結(jié) 27
第 5 章 三維實(shí)體建模和有限元分析 28
5.1 三維實(shí)體建模 28
5.2 轉(zhuǎn)向節(jié)有限元分析 29
5.2.1 轉(zhuǎn)向節(jié)受力分析 29
5.2.2 轉(zhuǎn)向節(jié)有限元模型的建立 30
5.2.3 仿真分析 30
5.3 本章小結(jié) 33
結(jié)論 34
致 謝 35
參考文獻(xiàn) 36
- IV -
哈爾濱工業(yè)大學(xué)本科畢業(yè)論文(設(shè)計(jì))
第 1 章 緒論
1.1 本課題研究的目的和意義
電動助力轉(zhuǎn)向系統(tǒng)具有節(jié)能、環(huán)保、安全、操縱輕便等優(yōu)點(diǎn),隨著科技的發(fā)展和人們生活水平及環(huán)保意識的提高,汽車轉(zhuǎn)向助力肯定會向更輕便、更節(jié)能、更安全的方向發(fā)展,而本課題正是沿著這個方向?qū)ζ嚨碾妱又D(zhuǎn)向系統(tǒng)進(jìn)行了研究。電動助力轉(zhuǎn)向系統(tǒng)能提供比其更安全、更舒適的轉(zhuǎn)向操控性和節(jié)能效果,與其他轉(zhuǎn)向系統(tǒng)相比具有明顯的優(yōu)勢。
轉(zhuǎn)向性能的優(yōu)劣是衡量乘用車安全性的重要依據(jù),也是制約乘用車技術(shù)發(fā)展的因素之一。其中,汽車在行駛狀態(tài)下轉(zhuǎn)向輪共振、轉(zhuǎn)向盤擺動,轉(zhuǎn)向輪碰到障礙物后傳給轉(zhuǎn)向盤的反沖力大等現(xiàn)象,是乘用車常存在的問題。
本文對齒條助力式轉(zhuǎn)向系統(tǒng)進(jìn)行了深入的研究,旨在嘗試通過對齒條助力式轉(zhuǎn)向系統(tǒng)的設(shè)計(jì),彌補(bǔ)常規(guī)轉(zhuǎn)向系統(tǒng)在結(jié)構(gòu)和性能上的不足,達(dá)到更好的轉(zhuǎn)向效果。
1.1.1 轉(zhuǎn)向系統(tǒng)簡介
汽車轉(zhuǎn)向系是用來保持或者改變汽車行駛方向的機(jī)構(gòu),在汽車轉(zhuǎn)向行駛時,保證各轉(zhuǎn)向輪之間有協(xié)調(diào)的轉(zhuǎn)角關(guān)系。它由轉(zhuǎn)向操縱機(jī)構(gòu)、轉(zhuǎn)向器和轉(zhuǎn)向傳動機(jī)構(gòu)組成。
轉(zhuǎn)向系統(tǒng)作為汽車的一個重要組成部分,其性能的好壞將直接影響到汽車的轉(zhuǎn)向特性、穩(wěn)定性和行駛安全性。目前汽車轉(zhuǎn)向技術(shù)主要有七大類:手動轉(zhuǎn)向技術(shù)(MS)、液壓助力轉(zhuǎn)向技術(shù)(HPS)、電控液壓助力轉(zhuǎn)向技術(shù)(ECHPS)、電動助力轉(zhuǎn)向技術(shù)(EPS)、四輪轉(zhuǎn)向技術(shù)(4WS)、主動前輪轉(zhuǎn)向技術(shù)(AFS)和線控轉(zhuǎn)向技術(shù)(SBW)。轉(zhuǎn)向系統(tǒng)市場上以HPS、ECHPS、EPS應(yīng)用為主。電動助力轉(zhuǎn)向具有節(jié)約燃料、有利于環(huán)境、可變力轉(zhuǎn)向、易實(shí)現(xiàn)產(chǎn)品模塊化等優(yōu)點(diǎn),是一項(xiàng)緊扣當(dāng)今汽車發(fā)展主題的新技術(shù),它是目前國內(nèi)轉(zhuǎn)向技術(shù)的研究熱點(diǎn)[1]。
1.1.2 轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求
(1) 汽車轉(zhuǎn)彎行駛時,全部車輪應(yīng)繞瞬時轉(zhuǎn)向中心旋轉(zhuǎn),任何車輪不應(yīng)有側(cè)滑。不滿足這項(xiàng)要求會加速輪胎磨損,并降低汽車的行駛穩(wěn)定性。
(2) 汽車轉(zhuǎn)向行駛后,在駕駛員松開轉(zhuǎn)向盤的條件下,轉(zhuǎn)向輪能自動返回到直線行駛位置,并穩(wěn)定行駛。
(3) 汽車在任何行駛狀態(tài)下,轉(zhuǎn)向輪都不得產(chǎn)生共振,轉(zhuǎn)向盤沒有擺動。
(4) 轉(zhuǎn)向傳動機(jī)構(gòu)和懸架導(dǎo)向裝置共同工作時,由于運(yùn)動不協(xié)調(diào)使車輪產(chǎn)生的擺動應(yīng)最小。
(5) 保證汽車有較高的機(jī)動性,具有迅速和小轉(zhuǎn)彎行駛能力。
(6) 操縱輕便。
(7) 轉(zhuǎn)向輪碰撞到障礙物以后,傳給轉(zhuǎn)向盤的反沖力要盡可能小。
(8) 轉(zhuǎn)向器和轉(zhuǎn)向傳動機(jī)構(gòu)的球頭處,有消除因磨損而產(chǎn)生間隙的調(diào)整機(jī)構(gòu)。
(9) 在車禍中,當(dāng)轉(zhuǎn)向軸和轉(zhuǎn)向盤由于車架或車身變形而共同后移時,轉(zhuǎn)向系應(yīng)有能使駕駛員免遭或減輕傷害的防傷裝置。
(10)進(jìn)行運(yùn)動校核,保證轉(zhuǎn)向輪與轉(zhuǎn)向盤轉(zhuǎn)動方向一致[2]。
1.1.3 研究的目的和意義
汽車的轉(zhuǎn)向性能是衡量汽車主動安全性能的重要標(biāo)準(zhǔn)之一,是汽車安全行駛的重要保障,直接受轉(zhuǎn)向系統(tǒng)性能的影響。因此,轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)在整車設(shè)計(jì)中顯得非常重要。另外,如何設(shè)置轉(zhuǎn)向系參數(shù)進(jìn)行整車匹配,使其達(dá)到最佳轉(zhuǎn)向性能,是一項(xiàng)非常重要的任務(wù)。
通過調(diào)研與設(shè)計(jì)的過程,掌握產(chǎn)品的基本設(shè)計(jì)思路及設(shè)計(jì)過程,可以鞏固汽車構(gòu)造與理論知識,加深對汽車轉(zhuǎn)向安全性的理解,提高通過理論知識解決實(shí)際問題的能力。
1.2 國內(nèi)外研究現(xiàn)狀概述
1.2.1 EPS與其他系統(tǒng)比較
對于電動助力轉(zhuǎn)向機(jī)構(gòu)(EPS),電動機(jī)僅在汽車轉(zhuǎn)向時才工作并消耗蓄電池能量;而對于常流式液壓動力轉(zhuǎn)向機(jī)構(gòu),因液壓泵處于長期工作狀態(tài)和內(nèi)泄漏等原因要消耗較多的能量。兩者比較,電動助力轉(zhuǎn)向的燃料消耗率僅為液壓動力轉(zhuǎn)向的16%~20%[3]。
液壓動力轉(zhuǎn)向機(jī)構(gòu)的工作介質(zhì)是油,任何部位出現(xiàn)漏油,油壓將建立不起來,不僅失去助力效能,并對環(huán)境造成污染。當(dāng)發(fā)動機(jī)出現(xiàn)故障停止工作時,液壓泵也不工作,結(jié)果也會喪失助力效能,這就降低了工作可靠性。電動助力轉(zhuǎn)向機(jī)構(gòu)不存在漏油的問題,只要蓄電池內(nèi)有電提供給電動助力轉(zhuǎn)向機(jī)構(gòu),就能有助力作用,所以工作可靠。若液壓動力轉(zhuǎn)向機(jī)構(gòu)的油路進(jìn)入空氣或者貯油罐油面過低,工作時將產(chǎn)生較大噪聲,在排除氣體之前會影響助力效果;而電動助力轉(zhuǎn)向僅在電動機(jī)工作時有輕微的噪聲[4]。
電動助力轉(zhuǎn)向與液壓動力轉(zhuǎn)向比較,轉(zhuǎn)動轉(zhuǎn)向盤時僅需克服轉(zhuǎn)向器的摩擦阻力,不存在回位彈簧阻力和反映路感的油壓阻力。電動助力轉(zhuǎn)向還有整體結(jié)構(gòu)緊湊、部件少、占用的空間尺寸小、質(zhì)量比液壓動力轉(zhuǎn)向約輕20%~25%以及汽車上容易布置等優(yōu)點(diǎn)。
1.2.2 EPS的特點(diǎn)
(1)EPS節(jié)能環(huán)保。
由于發(fā)動機(jī)運(yùn)轉(zhuǎn)時,液壓泵始終處于工作狀態(tài),液壓轉(zhuǎn)向系統(tǒng)使整個發(fā)動機(jī)燃油消耗量增加了3%~5%,而EPS以蓄電池為能源,以電機(jī)為動力元件,可獨(dú)立于發(fā)動機(jī)工作,EPS幾乎不直接消耗發(fā)動機(jī)燃油。EPS不存在液壓動力轉(zhuǎn)向系統(tǒng)的燃油泄漏問題,EPS通過電子控制,對環(huán)境幾乎沒有污染。
(2)EPS裝配方便。
EPS的主要部件可以集成在一起,易于布置,與液壓動力轉(zhuǎn)向相比減少了許多原件,沒有液壓系統(tǒng)所需要的油泵、油管、壓力流量控制閥、儲油罐等,原件數(shù)目少,裝配方便,節(jié)約時間。
(3)EPS效率高。
液壓動力轉(zhuǎn)向系統(tǒng)效率一般在60%~70%,而EPS得效率較高,可高達(dá)90%以上。
(4)EPS路感好。
傳統(tǒng)純液壓動力轉(zhuǎn)向系大多采用固定放大倍數(shù),工作驅(qū)動力大,但卻不能實(shí)現(xiàn)汽車在各種車速下駕駛時的輕便性和路感。而EPS系統(tǒng)的滯后性可以通過EPS控制器的軟件加以補(bǔ)償,是汽車在各種速度下都能得到滿意的轉(zhuǎn)向助力。
(5)EPS回正性好。
EPS系統(tǒng)結(jié)構(gòu)簡單,不僅操作簡便,還可以通過調(diào)整EPS控制器的軟件,得到最佳的回正性,從而改善汽車的操縱穩(wěn)定性和舒適性。
(6)動力性。
EPS系統(tǒng)可隨車速的高低主動分配轉(zhuǎn)向力,不直接消耗發(fā)動機(jī)功率,只在轉(zhuǎn)向時才起助力作用,保障發(fā)動機(jī)充足動力。(不像HPS液壓系統(tǒng),即使在不轉(zhuǎn)向時,油泵也一直運(yùn)轉(zhuǎn)處于工作狀態(tài),降低了使用壽命)
1.2.3 國外研究現(xiàn)狀
因?yàn)槲⑿娃I車上狹小的發(fā)動機(jī)艙空間給液壓助力轉(zhuǎn)向系統(tǒng)的安裝帶來了很大的麻煩,而EPS原件比較少,重量輕,裝配方便,比較適合在微型轎車上安裝。因此在國外,EPS系統(tǒng)首先是在微型轎車上發(fā)展起來的。
上世紀(jì)80年代初期,日本鈴木公司首次在其Cervo轎車上安裝了EPS系統(tǒng),隨后還應(yīng)用在其Alto車上。此后,EPS在日本得到迅速發(fā)展。出于節(jié)能環(huán)保的考慮,歐、美等國的汽車公司也相繼對EPS進(jìn)行了開發(fā)和研究。雖然比日本晚了十年時間,但是歐美國家的開發(fā)力度比較大,所選擇的產(chǎn)品類型也有所不同。日本起初選擇了技術(shù)相對成熟的有刷電機(jī)。
有刷電機(jī)比較成熟,在汽車上的應(yīng)用較廣,比如雨刷、車窗等部分,稍作改進(jìn)就適應(yīng)了EPS的要求,因此研發(fā)周期較短,上世紀(jì)80年代末期就開始產(chǎn)業(yè)化,主要裝配在微型車上。而歐美則選擇了難度較大的無刷電機(jī),但是電子控制系統(tǒng)比較復(fù)雜,延長了研發(fā)周期。直到90年代中期歐美才開始量產(chǎn)。從長遠(yuǎn)發(fā)展看,有刷電機(jī)存在一定弊端,比如電機(jī)產(chǎn)生的噪聲較難克服,磨損較嚴(yán)重,存在電磁干擾等問題。因此,日本現(xiàn)在國內(nèi)裝配的EPS也逐漸轉(zhuǎn)向無刷電機(jī)了[5]。
1.2.4 國內(nèi)外研究現(xiàn)狀
我國汽車電子行業(yè)的總體發(fā)展相對滯后,但是,隨著汽車對環(huán)保、節(jié)能和安全性要求的進(jìn)一步提高,代表著現(xiàn)代汽車轉(zhuǎn)向系統(tǒng)的發(fā)展方向的EPS電動助力轉(zhuǎn)向系統(tǒng)已被我國列為高新科技產(chǎn)業(yè)項(xiàng)目之一,國內(nèi)各大院校、科研機(jī)構(gòu)和企業(yè)在進(jìn)行EPS技術(shù)的研究,也有少數(shù)供應(yīng)商能批量提供轉(zhuǎn)向軸式的EPS系統(tǒng)。但總的來講目前國內(nèi)EPS技術(shù)還不成熟;供應(yīng)商所提供的EPS系統(tǒng)還未達(dá)到產(chǎn)品級的要求,且類型單一,還不能滿足整車廠需要。據(jù)悉,自主品牌研發(fā)的EPS系統(tǒng)離產(chǎn)業(yè)化就差整車廠批量裝車認(rèn)可這一臺階了,相信很快就可以實(shí)現(xiàn)量產(chǎn)。EPS系統(tǒng)是未來動力轉(zhuǎn)向系統(tǒng)的一個發(fā)展趨勢[6]。
在我國汽車使用的轉(zhuǎn)向器中,上世紀(jì)解放汽車和東風(fēng)汽車使用蝸桿曲柄指銷式轉(zhuǎn)向器轉(zhuǎn)向器,現(xiàn)在解放汽車和東風(fēng)汽車也已經(jīng)開始使用循環(huán)球式轉(zhuǎn)向器,其它汽車大都使用齒輪齒條式轉(zhuǎn)向器和循環(huán)球式轉(zhuǎn)向器。由于齒輪齒條式轉(zhuǎn)向器在小型車上具有很多其他轉(zhuǎn)向器無可替代的優(yōu)點(diǎn),我國也在大量生產(chǎn)齒輪齒條式轉(zhuǎn)向器并在小型貨車及家庭轎車使用中得到飛速發(fā)展。例如我國第一汽車集團(tuán)公司在中日合作的項(xiàng)目上使用的就是齒輪齒條式轉(zhuǎn)向器。還有其他本田、奧迪、桑塔納、夏利等轎車,以及南京依維柯、柳州五菱等小型貨車,均使用的是齒輪齒條式轉(zhuǎn)向器。雖然國內(nèi)齒輪齒條式轉(zhuǎn)向器有一定發(fā)展,但生產(chǎn)效率低,成本高。只有專業(yè)化設(shè)計(jì),流水線生產(chǎn),才能提高生產(chǎn)效率,降低生產(chǎn)成本,在國內(nèi)外市場上占有一席之地。
1.3 本文主要研究內(nèi)容
本文選取某一乘用車汽車車型為主體研究對象,通過齒條助力式轉(zhuǎn)向系統(tǒng)的設(shè)計(jì),使其能夠應(yīng)用該設(shè)計(jì)對象中。同時,為該轉(zhuǎn)向系統(tǒng)設(shè)計(jì)減速機(jī)構(gòu),使其具有較好的轉(zhuǎn)向特性,使該車轉(zhuǎn)向特性更加安全可靠。主要研究內(nèi)容包括:
(1)對轉(zhuǎn)向系統(tǒng)進(jìn)行設(shè)計(jì)計(jì)算,對轉(zhuǎn)向系方案進(jìn)行選擇,確定轉(zhuǎn)向系的主要參數(shù), 設(shè)計(jì)齒輪齒條轉(zhuǎn)向器和轉(zhuǎn)向梯形。
(2)對轉(zhuǎn)向梯形進(jìn)行優(yōu)化設(shè)計(jì),對轉(zhuǎn)向梯形數(shù)學(xué)模型進(jìn)行推導(dǎo),分析理想的左右轉(zhuǎn)向輪轉(zhuǎn)角關(guān)系和實(shí)際的左右轉(zhuǎn)向輪轉(zhuǎn)角的關(guān)系,對優(yōu)化目標(biāo)函數(shù)和約束條件進(jìn)行確定,最后對優(yōu)化結(jié)果進(jìn)行分析。
(3)用CATIA建立齒條助力式轉(zhuǎn)向系統(tǒng)完整的三維實(shí)體模型。
(4)基于有限元分析軟件ANSYS對轉(zhuǎn)向系統(tǒng)進(jìn)行建模和計(jì)算分析,并通過假設(shè)改進(jìn)方案對比,找到進(jìn)一步優(yōu)化方法。
(5)繪制齒條助力式轉(zhuǎn)向系統(tǒng)完整的工程圖,包括轉(zhuǎn)向傳動機(jī)構(gòu)轉(zhuǎn)配圖、轉(zhuǎn)向操縱機(jī)構(gòu)轉(zhuǎn)配圖及重要部件零件圖。
1.4 本章小結(jié)
本章對轉(zhuǎn)向系統(tǒng)做了介紹,分析了轉(zhuǎn)向系統(tǒng)的設(shè)計(jì)要求,闡述了EPS的特點(diǎn)和發(fā)展現(xiàn)狀,并將電動助力轉(zhuǎn)向系統(tǒng)和其他轉(zhuǎn)向系統(tǒng)進(jìn)行了分析比較,還重點(diǎn)分析了本課題的研究內(nèi)容和技術(shù)方案。最后分析和說明了對電動助力轉(zhuǎn)向系統(tǒng)研究的意義。
第 2 章 電動助力轉(zhuǎn)向系統(tǒng)的總體組成
2.1 電動助力轉(zhuǎn)向系統(tǒng)的機(jī)理及類型
近年來,電動助力轉(zhuǎn)向機(jī)構(gòu)在乘用車上得到應(yīng)用,并有良好的發(fā)展前景。電動助力轉(zhuǎn)向機(jī)構(gòu),除去應(yīng)當(dāng)滿足對液壓式動力轉(zhuǎn)向機(jī)構(gòu)的一些相似要求以外,同時還應(yīng)當(dāng)滿足:具有故障自診斷和報警功能;有良好的抗振動和抗干擾能力等;當(dāng)?shù)孛媾c車輪之間有反向沖擊力作用時,電動助力轉(zhuǎn)向機(jī)構(gòu)應(yīng)迅速反應(yīng),制止轉(zhuǎn)向盤轉(zhuǎn)動;在過載使用條件下有過載保護(hù)功能等。
2.1.1 電動助力轉(zhuǎn)向系統(tǒng)的機(jī)理
電動助力轉(zhuǎn)向機(jī)構(gòu)由機(jī)械轉(zhuǎn)向器與電動助力部分相結(jié)合構(gòu)成。電動助力部分包括電動機(jī)、電池、傳感器、控制器(ECU)、線束、減速機(jī)構(gòu)和電磁離合器等。電動助力轉(zhuǎn)向機(jī)構(gòu)示意圖如圖2-1所示
圖2-1 電動助力轉(zhuǎn)向機(jī)構(gòu)示意圖
目前用于乘用車的電動助力轉(zhuǎn)向機(jī)構(gòu)的轉(zhuǎn)向器,均采用齒輪齒條式轉(zhuǎn)向器。其功能除用來傳遞來自轉(zhuǎn)向盤的力矩與運(yùn)動以外,還有增扭、降速作用。轉(zhuǎn)向過程中,電動機(jī)將來自蓄電池的電能轉(zhuǎn)變?yōu)闄C(jī)械能向轉(zhuǎn)向系輸出而構(gòu)成轉(zhuǎn)向助力矩,并完成助力作用。與電動機(jī)連接的減速機(jī)構(gòu)有蝸輪蝸桿、滾珠螺桿螺母或行星齒輪機(jī)構(gòu)等,其作用也是降速、增扭。裝在減速機(jī)構(gòu)附近的離合器(通常為電磁離合器)是為了保證電動助力轉(zhuǎn)向機(jī)構(gòu)只在預(yù)先設(shè)定的行駛速度范圍內(nèi)工作。在車速達(dá)到某一設(shè)定值時,離合器分離,并暫時停止電動機(jī)的助力作用。與此同時,轉(zhuǎn)向機(jī)構(gòu)也暫時轉(zhuǎn)為機(jī)械式轉(zhuǎn)向機(jī)構(gòu)。當(dāng)電動機(jī)發(fā)生故障時,離合器也自動分離。離合器分離后再行轉(zhuǎn)向時,可不必因帶動電動機(jī)而消耗駕駛員體力。
汽車以較高車速轉(zhuǎn)向行駛,作用在轉(zhuǎn)向盤上的力矩將減小,以至于達(dá)到無需助力的程度,此時可設(shè)定:達(dá)到此車速時,電磁離合器停止工作。還有,在電動機(jī)停止工作以后,電磁離合器在控制器的控制下也要分離或者自動分離。此后,再進(jìn)行轉(zhuǎn)向?qū)⒉淮嬖谥ψ饔?,直至電動機(jī)恢復(fù)工作為止。
電動助力轉(zhuǎn)向機(jī)構(gòu)的工作原理如下:
當(dāng)駕駛員對轉(zhuǎn)向盤施力并轉(zhuǎn)動轉(zhuǎn)向盤時,位于轉(zhuǎn)向盤下方與轉(zhuǎn)向軸連接的轉(zhuǎn)矩傳感器將經(jīng)扭桿彈簧連接在一起的上、下轉(zhuǎn)向軸的相對轉(zhuǎn)動角位移信號轉(zhuǎn)變?yōu)殡娦盘杺髦量刂破?,在同一時刻車速信號也傳至控制器。根據(jù)以上兩信號,控制器確定電動機(jī)的旋轉(zhuǎn)方向和助力轉(zhuǎn)矩的大小。之后,控制器將輸出的數(shù)字量經(jīng)D/A轉(zhuǎn)換器,轉(zhuǎn)換為模擬量,并將其輸入電流控制電路。電流控制電路將來自微機(jī)的電流命令值同電動機(jī)電流的實(shí)際值進(jìn)行比較后生成一個差值信號,同時將此信號送往電動機(jī)驅(qū)動電路,該電路驅(qū)動電動機(jī),并向電動機(jī)提供控制電流,完成助力轉(zhuǎn)向作用[8]。
2.1.2 電動助力轉(zhuǎn)向系統(tǒng)的類型
EPS系統(tǒng)依據(jù)電動機(jī)布置位置的不同可分為轉(zhuǎn)向軸助力式、小齒輪助力式、齒條助力式三個基本類型。EPS系統(tǒng)的類型如圖2-2所示。
(1) 轉(zhuǎn)向軸助力式 轉(zhuǎn)向軸助力式電動助力轉(zhuǎn)向機(jī)構(gòu)的電動機(jī)布置在靠近轉(zhuǎn)向盤下方,并經(jīng)蝸輪蝸桿機(jī)構(gòu)與轉(zhuǎn)向軸連接(圖2-2a)。這種布置方案的特點(diǎn)是:
由于轉(zhuǎn)向軸助力式電動助力轉(zhuǎn)向的電動機(jī)布置在駕駛室內(nèi),所以有良好的工作條件;因電動機(jī)輸出的助力轉(zhuǎn)矩經(jīng)過減速機(jī)構(gòu)增大后傳給轉(zhuǎn)向軸,所以電動機(jī)輸出的助力轉(zhuǎn)矩相對小些,電動機(jī)尺寸也小,這又有利于在車上布置和減輕質(zhì)量;電動機(jī)、轉(zhuǎn)矩傳感器、減速機(jī)構(gòu)、電磁離合器等裝為一體是結(jié)構(gòu)緊湊,上述部件又與轉(zhuǎn)向器分開,故拆裝與維修工作容易進(jìn)行;轉(zhuǎn)向器仍然可以采用通用的典型結(jié)構(gòu)齒輪齒條式轉(zhuǎn)向器;電動機(jī)距駕駛員和轉(zhuǎn)向盤近,電動機(jī)的工作噪聲和振動直接影響駕駛員;轉(zhuǎn)向軸等零件也要承受來自電動機(jī)輸出的助力轉(zhuǎn)矩的作用,為使其強(qiáng)度足夠,必須增大受載件的尺寸;盡管電動機(jī)的尺寸不大,但因這種布置方案的電動機(jī)靠近方向盤,為了不影響駕駛員腿部的動作,在布置時仍然有一定的困難。
a) 轉(zhuǎn)向軸助力式 b) 齒輪助力式 c) 齒條助力式
圖2-2 EPS系統(tǒng)的類型
(2)齒輪助力式 齒輪助力式電動助力轉(zhuǎn)向機(jī)構(gòu)的電動機(jī)布置在與轉(zhuǎn)向器主動齒輪相連接的位置(圖2-2b),并通過驅(qū)動主動齒輪實(shí)現(xiàn)助力。這種布置方案的特點(diǎn)是:
電動機(jī)布置在地板下方、轉(zhuǎn)向器上部,工作條件比較差對密封要求較高;電動機(jī)的助力轉(zhuǎn)矩基于與轉(zhuǎn)向軸助力式相同的原因可以小些,因而電動機(jī)尺寸小,同時轉(zhuǎn)矩傳感器、減速機(jī)構(gòu)等的結(jié)構(gòu)緊湊、尺寸也小,這將有利于在整車上的布置和減小質(zhì)量;轉(zhuǎn)向軸等位于轉(zhuǎn)向器主動齒輪以上的零部件,不承受電動機(jī)輸出的助力轉(zhuǎn)矩的作用,故尺寸可以小些;電動機(jī)距駕駛員遠(yuǎn)些,它的動作噪聲對駕駛員影響不大,但震動仍然會傳到轉(zhuǎn)向盤;電動機(jī)、轉(zhuǎn)矩傳感器、電磁離合器、減速機(jī)構(gòu)等與轉(zhuǎn)向器主動齒輪裝在一個總成內(nèi),拆裝時會因相互影響而出現(xiàn)一定的困難;轉(zhuǎn)向器與典型的轉(zhuǎn)向器不能通用,需要單獨(dú)設(shè)計(jì)、制造。
(3)齒條助力式 齒條助力式電動助力轉(zhuǎn)向機(jī)構(gòu)的電動機(jī)與減速機(jī)構(gòu)等布置在齒條處(圖2-2c),并直接驅(qū)動齒條實(shí)現(xiàn)助力。這種布置方案的特點(diǎn)是:
電動機(jī)位于地板下方,相比之下,工作噪聲和振動對駕駛員的影響都小些;電動機(jī)減速機(jī)構(gòu)等不占據(jù)轉(zhuǎn)向盤至地板這段空間,因而有利于轉(zhuǎn)向軸的布置,駕駛員腿部的動作不會受到它們的干擾;轉(zhuǎn)向軸直至轉(zhuǎn)向器主動齒輪均不承受來自電動機(jī)的助力轉(zhuǎn)矩作用,故他們的尺寸能小些;電動機(jī)、減速機(jī)構(gòu)等工作在地板下方,條件較差,對密封要求良好;電動機(jī)輸出的助力轉(zhuǎn)矩只經(jīng)過減速機(jī)構(gòu)增扭,沒有經(jīng)過轉(zhuǎn)向器增扭,因而必須增大電動機(jī)輸出的助力轉(zhuǎn)矩才能有良好的助力效果,隨之而來的是電動機(jī)尺寸增大、質(zhì)量增加;轉(zhuǎn)向器結(jié)構(gòu)與典型的相差很多,必須單獨(dú)設(shè)計(jì)制造;采用滾珠螺桿螺母減速機(jī)構(gòu)時,會增加制造難度與成本;電動機(jī)、轉(zhuǎn)向器占用的空間雖然大一些,但用于前軸負(fù)荷大,前部空間相對寬松一些的乘用車上不是十分突出的問題[9]。
2.2 電動助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件
EPS主要由扭矩傳感器、車速傳感器、電動機(jī)、減速機(jī)構(gòu)和電子控制單元ECU組成。
(1) 扭矩傳感器 扭矩傳感器檢測扭轉(zhuǎn)桿扭轉(zhuǎn)變形,并將其轉(zhuǎn)變?yōu)殡娮有盘柌⑤敵鲋岭娮涌刂茊卧?,是電動助力轉(zhuǎn)向系統(tǒng)的關(guān)鍵部件之一。扭距傳感器由分相器單元、分相器單元及扭桿組成。轉(zhuǎn)子部分的分相器單元固定于轉(zhuǎn)向主軸,轉(zhuǎn)子部分的分相器單元固定于轉(zhuǎn)向傳動軸。扭轉(zhuǎn)桿扭轉(zhuǎn)后,使兩個分相器單元產(chǎn)生一個相對角度,電子控制單元根據(jù)兩個分相器的相對位置決定對EPS電動機(jī)提供多少電壓。
(2)車速傳感器 車速傳感器的功能是測量汽車的行駛速度。目前,轎車EPS控制器一般都從整車CAN總線中提取車速信號。
(3)電動機(jī) 電動機(jī)由轉(zhuǎn)角傳感器、定子及轉(zhuǎn)子組成。將電動機(jī)和減速機(jī)構(gòu)布置在齒條處,并直接驅(qū)動齒條實(shí)現(xiàn)助力。通過轉(zhuǎn)角傳感器檢測電動機(jī)的旋轉(zhuǎn)角度防止扭矩波動。
(4)減速機(jī)構(gòu) 減速機(jī)構(gòu)采用滾珠式減速齒輪機(jī)構(gòu),將其固定在電動機(jī)的轉(zhuǎn)子上。電動機(jī)的轉(zhuǎn)動傳到減速機(jī)構(gòu),經(jīng)過滾珠及蝸桿傳到齒條軸上。滾珠在機(jī)構(gòu)內(nèi)部經(jīng)過導(dǎo)向進(jìn)行循環(huán)。
(5)電子控制單元 電子控制單元(ECU)的功能是依據(jù)扭矩傳感器和車速傳感器的信號,進(jìn)行分析和計(jì)算后,發(fā)出指令,控制電動機(jī)的動作。此外,ECU還有安全保護(hù)和自我診斷的功能,ECU通過采集電動機(jī)的電流、發(fā)動機(jī)轉(zhuǎn)速等信號判斷系統(tǒng)工作是否正常,一旦系統(tǒng)工作異常,電動助力被切斷;同時ECU將進(jìn)行故障診斷分析,故障指示燈亮,并以故障所對應(yīng)的模式閃爍[10]。
2.3 電動助力轉(zhuǎn)向的助力特性
電動助力轉(zhuǎn)向的助力特性由軟件設(shè)定。通常將助力特性曲線設(shè)計(jì)成隨著汽車行駛速度的變化而變化,并將這種助力特性稱之為車速感應(yīng)型。圖2-3示出的車速感應(yīng)型助力特性曲線表明,助力既是作用到轉(zhuǎn)向盤上的力矩的函數(shù),同時也是車速的函數(shù)。
當(dāng)車速時,相當(dāng)于汽車在原地轉(zhuǎn)向,助力特性曲線的位置居其他各條曲線之上,助力強(qiáng)度達(dá)到最大。隨著車速不斷升高,助力特性曲線的位置也逐漸降低,直至車速達(dá)到最高車速為止,此時的助力強(qiáng)度已為最小,而路感強(qiáng)度達(dá)到最大[6]。
電動助力轉(zhuǎn)向系統(tǒng)的車速感應(yīng)型助力特性如圖2-3所示。
圖2-3 車速感應(yīng)型助力特性
2.4 本章小結(jié)
本章主要是介紹了電動助力轉(zhuǎn)向機(jī)構(gòu)的組成、工作原理,以及對電動助力轉(zhuǎn)向的三種布置形式進(jìn)行了分析對比。并對電動助力轉(zhuǎn)向系統(tǒng)各主要部件的結(jié)構(gòu)及工作過程和助力特性進(jìn)行了分析。
第 3 章 齒條助力轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)參數(shù)設(shè)計(jì)
3.1 設(shè)計(jì)目標(biāo)車輛主要參數(shù)
在對整車轉(zhuǎn)向系統(tǒng)分析之前,首先根據(jù)本田雅閣汽車參數(shù),整理出目標(biāo)車輛的整車參數(shù),如表3-1所示。
表 31 整車主要參數(shù)
序號
參數(shù)名稱
數(shù)值
序號
參數(shù)名稱
數(shù)值
1
總質(zhì)量(kg)
2090
5
輪胎
215/60R16
2
輪距(mm)
1590
6
輪胎壓力(MPa)
0.18
3
軸距(mm)
2800
7
最小轉(zhuǎn)彎半徑(mm)
5700
4
方向盤直徑(mm)
350
8
轉(zhuǎn)向軸負(fù)荷(N)
7650
3.2 轉(zhuǎn)向系統(tǒng)結(jié)構(gòu)參數(shù)設(shè)計(jì)
3.2.1 對動力轉(zhuǎn)向機(jī)構(gòu)的要求
(1)運(yùn)動學(xué)上應(yīng)保持轉(zhuǎn)向輪轉(zhuǎn)角和駕駛員轉(zhuǎn)動轉(zhuǎn)向盤的轉(zhuǎn)角之間保持一定的比例關(guān)系。
(2)隨著轉(zhuǎn)向輪阻力的增大(或減?。?,作用在轉(zhuǎn)向盤上的手力必須增大(或減?。?,稱之為“路感”。
(3)當(dāng)作用在轉(zhuǎn)向盤上的切向力時(因汽車形式不同而異),動力轉(zhuǎn)向器就開始工作。
(4)轉(zhuǎn)向后,轉(zhuǎn)向盤應(yīng)自動回正,并使汽車保持在穩(wěn)定的直線行駛狀態(tài)。
(5)工作靈敏。
(6)動力轉(zhuǎn)向失靈時,仍能用機(jī)械系統(tǒng)操縱車輪轉(zhuǎn)向[11]。
3.2.2 齒輪齒條轉(zhuǎn)向器形式的選擇
齒輪齒條轉(zhuǎn)向器最主要的優(yōu)點(diǎn)是:結(jié)構(gòu)簡單、價格低廉、質(zhì)量輕、剛性好、使用可靠;傳動效率高達(dá)90%;根據(jù)輸入齒輪位置和輸出特點(diǎn)不同,齒輪齒條式轉(zhuǎn)向器有四種形式[10]。齒輪齒條式轉(zhuǎn)向器的四種類型如圖3-1所示:中間輸入,兩端輸出(圖3-1a);側(cè)面輸入,兩端輸出(圖3-1b);側(cè)面輸入,中間輸出(圖3-1c);側(cè)面輸入,一端輸出圖(圖3-1d)。
圖3-1 齒輪齒條式轉(zhuǎn)向器的四種形式
3.2.3 轉(zhuǎn)向系計(jì)算載荷的確定
為了保證行駛安全,組成轉(zhuǎn)向系的各零件應(yīng)有足夠的強(qiáng)度。欲驗(yàn)算轉(zhuǎn)向系零件的強(qiáng)度,需首先確定作用在各零件上的力。影響這些力的主要因素有轉(zhuǎn)向軸的負(fù)荷、路面阻力和輪胎氣壓等。為轉(zhuǎn)動轉(zhuǎn)向輪要克服的阻力,包括轉(zhuǎn)向輪繞主銷轉(zhuǎn)動的阻力、車輪穩(wěn)定阻力、輪胎變形阻力和轉(zhuǎn)向系中的內(nèi)摩擦阻力等。
精確地計(jì)算出這些力是困難的。為此用足夠精確的半經(jīng)驗(yàn)公式來計(jì)算汽車在瀝青或者混凝土路面上的原地轉(zhuǎn)向阻力矩。
N?mm
式中 f ——輪胎和路面間的滑動摩擦因數(shù);
——轉(zhuǎn)向軸負(fù)荷;
P——輪胎氣壓。
作用在轉(zhuǎn)向盤上的手力為:
=122.2N
式中 ——轉(zhuǎn)向搖臂長,單位為mm;
——原地轉(zhuǎn)向阻力矩;
——轉(zhuǎn)向節(jié)臂長;
——為轉(zhuǎn)向盤直徑;
——轉(zhuǎn)向器角傳動比;
——轉(zhuǎn)向器正效率。
因齒輪齒條式轉(zhuǎn)向傳動機(jī)構(gòu)無轉(zhuǎn)向搖臂,故 、不代入數(shù)值。對給定的汽車,用上式計(jì)算出來的作用力是最大值。因此,可以用此值作為計(jì)算載荷。梯形臂長度的計(jì)算:
輪輞直徑 =16in=406.4mm
梯形臂長度
=152.6mm
取=150mm
輪胎直徑
=540.3mm
取=540mm
轉(zhuǎn)向橫拉桿直徑
;=216MPa;=347.2 N·m
12.534mm
取=15mm
初步估算主動齒輪軸的直徑:
26.928mm
取=30mm
上述的計(jì)算只是初步對所研究的轉(zhuǎn)向系載荷的確定。轉(zhuǎn)向傳動機(jī)構(gòu)初選參數(shù)如表3-2所示。
表32 轉(zhuǎn)向傳動機(jī)構(gòu)初選參數(shù)
序號
參數(shù)名稱
數(shù)值
序號
參數(shù)名稱
數(shù)值
1
阻力矩(N·mm)
340805.1
5
輪胎直徑(mm)
540
2
轉(zhuǎn)向盤手力(N)
122.2
6
橫拉桿直徑(mm)
15
3
輪輞直徑(mm)
406.4
7
齒輪軸直徑(mm)
30
4
梯形臂長度(mm)
150
8
轉(zhuǎn)向器角傳動比
18
3.3 轉(zhuǎn)向系統(tǒng)設(shè)計(jì)要求
(1)轉(zhuǎn)向傳動比 當(dāng)轉(zhuǎn)向盤從鎖點(diǎn)向鎖點(diǎn)轉(zhuǎn)動,每只前輪大約從其正前方開始轉(zhuǎn)動30°,因而前輪從左到右總共轉(zhuǎn)動大約60°。若傳動比是1:1,轉(zhuǎn)向盤旋轉(zhuǎn)1°,前輪將轉(zhuǎn)向1°,轉(zhuǎn)向盤向任一方向轉(zhuǎn)動30°將使其前輪從鎖點(diǎn)轉(zhuǎn)向鎖點(diǎn)。這種傳動比過于小,因而轉(zhuǎn)向盤最輕微的運(yùn)動將會使車輛突然改變方向。轉(zhuǎn)向角傳動比必須使前輪轉(zhuǎn)動同樣角度時需要更大的轉(zhuǎn)向盤轉(zhuǎn)角。對乘用車,推薦轉(zhuǎn)向器角傳動比在17~25范圍內(nèi)選??;對商用車,在23~32范圍內(nèi)選取,這里選傳動比為18:1。即在這樣的傳動比下,轉(zhuǎn)向盤每轉(zhuǎn)動18°,前輪轉(zhuǎn)向1°。
(2)齒輪齒條式轉(zhuǎn)向器的設(shè)計(jì)要求 齒輪齒條式轉(zhuǎn)向器的齒輪多數(shù)采用斜齒圓柱齒輪。齒輪模數(shù)取值范圍多在2~3mm之間。主動小齒輪齒數(shù)多數(shù)在5~7個齒范圍變化,壓力角取20°,齒輪螺旋角取值范圍多為9°~15°。齒條齒數(shù)應(yīng)根據(jù)轉(zhuǎn)向輪達(dá)到最大偏轉(zhuǎn)角時,相應(yīng)的齒條移動行程應(yīng)達(dá)到的值來確定。變速比的齒條壓力角,對現(xiàn)有結(jié)構(gòu)在12°~35°范圍內(nèi)變化。此外,設(shè)計(jì)時應(yīng)驗(yàn)算齒輪的抗彎強(qiáng)度和接觸強(qiáng)度[12]。
(3)EPS系統(tǒng)齒輪齒條轉(zhuǎn)向器的安裝 齒輪齒條式轉(zhuǎn)向器可安在前橫梁上或發(fā)動機(jī)后部的前圍板上。橡膠隔振套包在轉(zhuǎn)向器外,并固定在橫梁上或前圍板上。齒輪齒條轉(zhuǎn)向器的正確安裝高度,使轉(zhuǎn)向橫拉桿和懸架下擺臂可平行安置。齒輪齒條式轉(zhuǎn)向系統(tǒng)中磨擦點(diǎn)的數(shù)目減少了,因此這種系統(tǒng)輕便緊湊。大多數(shù)承載式車身的前輪驅(qū)動汽車用齒輪齒條式轉(zhuǎn)向機(jī)構(gòu)。由于齒條直接連著梯形臂,這種轉(zhuǎn)向機(jī)構(gòu)可提供好的路感[13]。
(4)主動小齒輪選用16MnCr5或15CrNi6材料制造,而齒條常采用45鋼制造。為減輕質(zhì)量,殼體用鋁合金壓鑄[14]。
3.4 EPS主要部件的設(shè)計(jì)
3.4.1 齒條的設(shè)計(jì)
齒條是在金屬殼體內(nèi)來回滑動的,加工有齒形的金屬條。轉(zhuǎn)向器殼體是安裝在前橫梁或前圍板的固定位置上的。齒條代替梯形轉(zhuǎn)向桿系的搖桿和轉(zhuǎn)向搖臂,并保證轉(zhuǎn)向橫拉桿在適當(dāng)?shù)母叨纫允顾麄兣c懸架下擺臂平行。齒條可以比作是梯形轉(zhuǎn)向桿系的轉(zhuǎn)向直拉桿。導(dǎo)向座將齒條支持在轉(zhuǎn)向器殼體上。齒條的橫向運(yùn)動拉動或推動轉(zhuǎn)向橫拉桿,使前輪轉(zhuǎn)向。
1、齒輪軸和齒條的設(shè)計(jì)計(jì)算
(1) 選擇材料及熱處理方式
小齒輪選用16MnCr5,滲碳淬火,齒面硬度56-62HRC
齒條選用45鋼,表面淬火,齒面硬度52-56HRC
(2) 確定許用應(yīng)力
a) 確定和
MPa MPa
MPa MPa
b) 計(jì)算應(yīng)力循環(huán)次數(shù)N,確定壽命系數(shù)、。
=
式中 ——齒輪轉(zhuǎn)速(r/min);
——齒輪轉(zhuǎn)一周,同一側(cè)齒面嚙合的次數(shù);
——齒輪的工作壽命(h);
c) 計(jì)算許用應(yīng)力
取,
(3-9)
=1920MPa =1620MPa
應(yīng)力修正系數(shù)
(3-10)
(3-11)
MPa MPa
2、初步確定齒輪的基本參數(shù)和主要尺寸
(1) 選擇齒輪類型
根據(jù)齒輪傳動的工作條件,選用斜齒圓柱齒輪與斜齒齒條嚙合傳動方案。
(2) 選擇齒輪傳動精度等級。
選用7級精度
(3) 初選參數(shù)
初選=1.4 =0.8
按當(dāng)量齒數(shù)
(4) 初步計(jì)算齒輪模數(shù)
轉(zhuǎn)矩
=35000 N?mm
閉式硬齒面?zhèn)鲃樱待X根彎曲疲勞強(qiáng)度設(shè)計(jì)。
(3-12)
=2.208mm
(5) 確定載荷系數(shù)
(3-13)
m/s
則
(6) 修正法向模數(shù)
(3-14)
圓整為標(biāo)準(zhǔn)值 取=3mm
3、確定齒輪傳動主要參數(shù)和幾何尺寸
(1) 分度圓直徑
(3-15)
=19.23mm
(2) 齒頂圓直徑
(3-16)
mm
(3) 齒根圓直徑
(3-17)
=12.98mm
(4) 齒寬
mm
因?yàn)橄嗷Ш淆X輪的基圓齒距必須相等,即。
齒輪法面基圓齒距為
齒條法面基圓齒距為
取齒條法向模數(shù)為
(5) 齒條齒頂高
(3-18)
mm
(6) 齒條齒根高
(3-19)
=3.725mm
(7) 法面齒距
(3-20)
mm
4、校核齒面接觸疲勞強(qiáng)度
(3-21)
=1653.6MPa<
所以齒面接觸疲勞強(qiáng)度滿足要求[15]。
齒條的尺寸設(shè)計(jì)參數(shù)如表3-3所示。
表3-3 齒條的尺寸設(shè)計(jì)參數(shù)
序號
項(xiàng)目
尺寸參數(shù)(mm)
1
總長
730
2
直徑
25
3
齒數(shù)
20
4
法向模數(shù)
3
3.4.2 齒輪軸的設(shè)計(jì)
齒輪是一只切有齒形的軸。它安裝在轉(zhuǎn)向器殼體上并使其齒與齒條上的齒相嚙合。齒輪齒條上的齒可以是直齒也可以是斜齒。齒輪軸上端與轉(zhuǎn)向柱內(nèi)的轉(zhuǎn)向軸相連。因此,轉(zhuǎn)向盤的旋轉(zhuǎn)使齒條橫向移動以操縱前輪。齒輪軸由安裝在轉(zhuǎn)向器殼體上的球軸承支承[16]。
齒輪軸的尺寸設(shè)計(jì)參數(shù)如表3-4所示。
表3-4 齒輪軸的尺寸設(shè)計(jì)參數(shù)
序號
項(xiàng)目
尺寸參數(shù)(mm)
1
總長
120
2
齒寬
35
3
齒數(shù)
7
4
法向模數(shù)
3
5
螺旋角
14°
6
螺旋方向
左旋
3.4.3 轉(zhuǎn)向橫拉桿及其端部的設(shè)計(jì)
轉(zhuǎn)向橫拉桿與梯形轉(zhuǎn)向桿系的相似。球頭銷通過螺紋與齒條連接。當(dāng)這些球頭銷依制造廠的規(guī)范擰緊時,在球頭銷上就作用了一個預(yù)載荷。防塵套夾在轉(zhuǎn)向器兩側(cè)的殼體和轉(zhuǎn)向橫拉桿上,這些防塵套阻止雜物進(jìn)入球銷及齒條中[18]。
轉(zhuǎn)向橫拉桿端部與外端用螺紋聯(lián)接。這些端部與梯形轉(zhuǎn)向桿系的相似。側(cè)面螺母將橫拉桿外端與橫拉桿鎖緊[19]。
橫拉桿的接頭位于橫拉桿的兩端,主要作用是傳遞扭矩,使梯形臂轉(zhuǎn)動。零件有一個螺紋孔,主要作用是連接橫拉桿。還有一個內(nèi)螺紋孔,主要作用是連接梯形臂。
轉(zhuǎn)向橫拉桿及接頭的尺寸設(shè)計(jì)參數(shù)如表3-3所示。
表3-5 轉(zhuǎn)向橫拉桿及接頭的尺寸設(shè)計(jì)參數(shù)
序號
項(xiàng)目
尺寸參數(shù)(mm)
1
橫拉桿總長
340
2
橫拉桿直徑
15
3
螺紋長度
50
4
外接頭總長
251
5
球頭銷總長
62
6
球頭銷螺紋公稱直徑
M101
7
外接頭螺紋工程直徑
M121.5
3.4.4 齒條調(diào)整裝置的設(shè)計(jì)
齒條導(dǎo)向座安裝在齒條光滑的一面。齒條導(dǎo)向座和與殼體螺紋連接的調(diào)節(jié)螺塞之間連有一個彈簧。彈簧在齒輪與齒條的配合中有非常大的作用,此調(diào)節(jié)螺塞由鎖緊螺母固定。齒條導(dǎo)向座的調(diào)節(jié)使齒輪、齒條間有一定預(yù)緊力,此預(yù)緊力會影響轉(zhuǎn)向沖擊、噪聲及反饋[20]。
齒條調(diào)整裝置的設(shè)計(jì)包括齒條導(dǎo)向座、殼體、彈簧、調(diào)節(jié)螺塞和鎖緊螺母的設(shè)計(jì),在設(shè)計(jì)過程中注意它們之間的配合。
齒條調(diào)整裝置的尺寸設(shè)計(jì)參數(shù)如表3-6所示。
表3-6 齒條調(diào)整裝置的尺寸設(shè)計(jì)參數(shù)
序號
項(xiàng)目
尺寸參數(shù)(mm)
1
導(dǎo)向座外徑
45
2
導(dǎo)向座高度
40
3
螺塞螺紋公稱直徑
M352
4
螺塞高度
20
5
鎖止螺母高度
5
6
彈簧總?cè)?shù)
5.25
7
彈簧節(jié)距
3
8
彈簧外徑
20
9
彈簧工作高度
31.58
3.5 本章小結(jié)
本章是電動助力轉(zhuǎn)向系統(tǒng)的設(shè)計(jì),主要內(nèi)容如下:
(1) 對電動助力轉(zhuǎn)向系統(tǒng)中的齒輪齒條轉(zhuǎn)向器的主要元件進(jìn)行的詳細(xì)的介紹,并且給出了一些參考的轉(zhuǎn)向系參數(shù),對主要元件進(jìn)行結(jié)構(gòu)設(shè)計(jì)。
(2) 根據(jù)已知條件,對電動助力轉(zhuǎn)向系統(tǒng)中的齒輪齒條式轉(zhuǎn)向器進(jìn)行了齒輪軸和齒條的設(shè)計(jì)計(jì)算
第 4 章 轉(zhuǎn)向梯形的優(yōu)化設(shè)計(jì)
4.1 轉(zhuǎn)向梯形數(shù)學(xué)模型推導(dǎo)
4.1.1 理想的左右轉(zhuǎn)向輪轉(zhuǎn)角關(guān)系
汽車轉(zhuǎn)向示意圖如圖4-1所示。
v
a
b
b
a
B
1.1 L
1.2 R
圖4-1汽車轉(zhuǎn)向示意圖
為了避免在汽車轉(zhuǎn)向時產(chǎn)生的路面對汽車行駛的附加阻力和輪胎磨損過快,要求轉(zhuǎn)向系統(tǒng)即可能保證在汽車轉(zhuǎn)向時,所有的車輪均作純滾動。顯然,這只有在所有車輪的軸線都相交于一點(diǎn)時方能實(shí)現(xiàn)。此交點(diǎn)被稱為轉(zhuǎn)向中心。如圖4-1所示,汽車左轉(zhuǎn)彎時,內(nèi)側(cè)轉(zhuǎn)向輪轉(zhuǎn)角應(yīng)大于外側(cè)車輪的轉(zhuǎn)角。當(dāng)車輪被視為絕對剛體的假設(shè)條件下,左右轉(zhuǎn)向輪轉(zhuǎn)角和應(yīng)滿足Ackermann轉(zhuǎn)向幾何學(xué)要求,如式4-1所示。
式中 ——內(nèi)側(cè)轉(zhuǎn)向輪轉(zhuǎn)角;
——外側(cè)轉(zhuǎn)向輪轉(zhuǎn)角;
B-兩側(cè)主銷軸線與地面相交點(diǎn)之間的距離;
L-汽車前后軸距;
R-轉(zhuǎn)彎半徑。
根據(jù)式4-1可得理想的右輪轉(zhuǎn)角,如式4-2所示。
同理,當(dāng)汽車右轉(zhuǎn)向時,Ackermann轉(zhuǎn)角關(guān)系如式4-3所示。
根據(jù)式4-3可得理想的右輪轉(zhuǎn)角,如式4-4所示。
4.1.2 實(shí)際的左右轉(zhuǎn)向輪轉(zhuǎn)角關(guān)系
圖4-2是一種含有驅(qū)動滑塊的常用斷開式轉(zhuǎn)向梯形機(jī)構(gòu)。齒輪齒條轉(zhuǎn)向機(jī)構(gòu)將方向盤的旋轉(zhuǎn)運(yùn)動轉(zhuǎn)化成齒條(滑塊)的直線運(yùn)動,繼而驅(qū)動轉(zhuǎn)向梯形機(jī)構(gòu)實(shí)現(xiàn)左右前輪轉(zhuǎn)向。斷開式轉(zhuǎn)向梯形機(jī)構(gòu)如圖4-2所示。
圖中:——轉(zhuǎn)向機(jī)齒條左右球鉸中心的距離;
——左右橫拉桿的長度;
——左右轉(zhuǎn)向節(jié)臂的長度;
——車輪中心至轉(zhuǎn)向主銷的距離;
——轉(zhuǎn)向齒條從中心位置向左的位移量;
——轉(zhuǎn)向齒條從中心位置向左的位移量;
——轉(zhuǎn)向齒條左右球鉸中心連線與左右轉(zhuǎn)向主銷中心連線之偏距;
——直線行駛時,轉(zhuǎn)向齒條左球鉸中心和左轉(zhuǎn)向主銷的水平距離;
——轉(zhuǎn)向節(jié)臂與汽車縱軸線的夾角。
圖4-2 由齒輪齒條轉(zhuǎn)向機(jī)驅(qū)動的斷開式轉(zhuǎn)向梯形機(jī)構(gòu)
運(yùn)用余弦定理和三角函數(shù)變換公式,經(jīng)推導(dǎo)可得:
A點(diǎn)的坐標(biāo)值為:
式中 ,,
——表示轉(zhuǎn)向齒條左球鉸中心和左轉(zhuǎn)向主銷中心的實(shí)際距離
當(dāng)A點(diǎn)位于O點(diǎn)的左側(cè)——即時:
當(dāng)A點(diǎn)位于O點(diǎn)的右側(cè)——即時
當(dāng)D點(diǎn)位于O點(diǎn)的左側(cè)——即時:
當(dāng)D點(diǎn)位于O點(diǎn)的右側(cè)——即時:
4.2 優(yōu)化目標(biāo)函數(shù)和約束條件的確定
4.2.1 優(yōu)化目標(biāo)函數(shù)的確定
由于現(xiàn)有的轉(zhuǎn)向梯形機(jī)構(gòu)并不能夠完全滿足Ackermann轉(zhuǎn)向幾何學(xué)要求,實(shí)際上只能在一定的車輪轉(zhuǎn)角范圍內(nèi),使兩側(cè)車輪偏轉(zhuǎn)角的關(guān)系大體上接近于理想關(guān)系。同時,Matlab軟件中提供了非線性規(guī)劃的相關(guān)優(yōu)化函數(shù),因此,本著最大限度地逼近理想的阿克曼轉(zhuǎn)角的原則,我們采用離散化方法,給出了優(yōu)化設(shè)計(jì)目標(biāo)函數(shù)為:
式中 ——右側(cè)轉(zhuǎn)向輪的實(shí)際轉(zhuǎn)角;
——右側(cè)轉(zhuǎn)向輪的理想轉(zhuǎn)角;
——取值次數(shù)。
4.2.2 優(yōu)化約束條件的確定
對于一般汽車,其方向盤最大行程大約為(約三圈),轎車的轉(zhuǎn)向系統(tǒng)傳動比大約為,轉(zhuǎn)向輪最大轉(zhuǎn)角約為。依據(jù)該轎車設(shè)計(jì)要求,其轉(zhuǎn)向輪最大轉(zhuǎn)角設(shè)計(jì)為左右,而齒條的行程為mm。由于橫拉桿和轉(zhuǎn)向節(jié)臂之間主要是傳遞力的作用關(guān)系,因此,在傳動過程中,兩桿之間應(yīng)該盡可能地保持小的壓力角,以保證兩桿間壓力角在規(guī)定的范圍內(nèi)。
根據(jù)該輪邊驅(qū)動電動車的布置尺寸和上述設(shè)計(jì)基本要求,確定各優(yōu)化變量的取值范圍為:
原車轉(zhuǎn)向梯形尺寸設(shè)為設(shè)計(jì)變量的初值:
4.3 優(yōu)化結(jié)果及驗(yàn)證
利用非線性最小二乘法對該轉(zhuǎn)向梯形進(jìn)行優(yōu)化,優(yōu)化結(jié)果如下:
車輛優(yōu)化前后的理想和實(shí)際的汽車內(nèi)外車輪轉(zhuǎn)角的關(guān)系曲線分別如圖4-3a和4-3b所示。
從圖中可以看出,對于原轉(zhuǎn)向梯形機(jī)構(gòu),當(dāng)左輪轉(zhuǎn)角超出 (負(fù)號表示右轉(zhuǎn)彎)范圍后,實(shí)際轉(zhuǎn)角與理想值即已產(chǎn)生偏差,左側(cè)車輪轉(zhuǎn)角為 時的偏差已達(dá) ,而在最大轉(zhuǎn)角處的偏差為 ,相對誤差為2.83%;
而優(yōu)化后的轉(zhuǎn)向梯形機(jī)構(gòu),當(dāng)左側(cè)車輪轉(zhuǎn)角在 范圍內(nèi)變化時,實(shí)際值與理想值能夠很好地相吻合,只有在較大轉(zhuǎn)角時,二者之間才產(chǎn)生了微小偏差,當(dāng)左側(cè)車輪轉(zhuǎn)角達(dá)到最大時(約),右側(cè)車輪的實(shí)際轉(zhuǎn)角與理想轉(zhuǎn)角之間的差值為,相對誤差為2.76%。在轉(zhuǎn)向輪轉(zhuǎn)角范圍內(nèi),選取30個點(diǎn),計(jì)算優(yōu)化目標(biāo)函數(shù)值,對于原轉(zhuǎn)向梯形機(jī)構(gòu),其函數(shù)值為0.0042,而優(yōu)化后下降為0.0021。
從優(yōu)化前后理想和實(shí)際的汽車內(nèi)外車輪的轉(zhuǎn)角關(guān)系可以看出,優(yōu)化取得很好的效果。優(yōu)化后實(shí)際轉(zhuǎn)角與理想值已盡可能地縮小,尤其在小轉(zhuǎn)角范圍內(nèi)優(yōu)化效果明顯。
以下從優(yōu)化后的轉(zhuǎn)向梯形的轉(zhuǎn)向節(jié)臂與轉(zhuǎn)向橫拉桿之間的壓力角的變化來近一步驗(yàn)證分析優(yōu)化的效果。
由于壓力角影響著轉(zhuǎn)向過程中的動力傳遞效率,優(yōu)化后的轉(zhuǎn)向梯形的轉(zhuǎn)向節(jié)臂與轉(zhuǎn)向橫拉桿之間的壓力角 的變化曲線如圖4-4所示。
從圖中可以看出,該壓力角在車輪轉(zhuǎn)角的大部分變化范圍內(nèi)都保持較小值,即較高的傳動效率,只有當(dāng)左側(cè)(或右側(cè))車輪達(dá)到或者接近于左轉(zhuǎn)(或右轉(zhuǎn))時的極限轉(zhuǎn)角時,壓力角才比較大,由于汽車進(jìn)行極限轉(zhuǎn)向的頻率比較低。
因此,優(yōu)化結(jié)果可行。
(a)
(b)
圖4-3 汽車內(nèi)外側(cè)車輪轉(zhuǎn)角關(guān)系
圖4-4壓力角變化曲線
4.4 本章小結(jié)
本章介紹了與齒輪齒條式轉(zhuǎn)向器配用的轉(zhuǎn)向傳動機(jī)構(gòu)的優(yōu)化設(shè)計(jì),介紹了該轉(zhuǎn)向機(jī)構(gòu)的優(yōu)化設(shè)計(jì)方法,給出了優(yōu)化結(jié)果,并進(jìn)行了驗(yàn)證分析。
第 5 章 三維實(shí)體建模和有限元分析
5.1 三維實(shí)體建模
本設(shè)計(jì)根據(jù)以上轉(zhuǎn)向傳動方案的選取和尺寸結(jié)構(gòu)的計(jì)算,繪制了齒條助力式轉(zhuǎn)向系統(tǒng)三維圖,如圖5-1至5-3所示。
圖5-1 轉(zhuǎn)向系統(tǒng)總裝配圖
圖5-2 轉(zhuǎn)向傳動機(jī)構(gòu)
圖5-3 轉(zhuǎn)向操縱機(jī)構(gòu)
5.2 轉(zhuǎn)向節(jié)有限元分析
轉(zhuǎn)向節(jié)是汽車車橋上的重要部件之一,它承受轉(zhuǎn)向輪的負(fù)載以及路面?zhèn)鬟f來的沖擊,同時還傳遞來自轉(zhuǎn)向器的轉(zhuǎn)向力實(shí)現(xiàn)對汽車行駛方向的控制,因此對其在強(qiáng)度、抗沖擊性、疲勞強(qiáng)度以及可靠性方面都有很高的要求,對轉(zhuǎn)向節(jié)零部件進(jìn)行強(qiáng)度分析十分必要。
5.2.1 轉(zhuǎn)向節(jié)受力分析
根據(jù)汽車設(shè)計(jì)手冊,對轉(zhuǎn)向節(jié)的受力按照3種危險工況進(jìn)行計(jì)算分析,即:緊急制動工況、側(cè)滑工況和越過不平路面工況。由文獻(xiàn)[2]可知,轉(zhuǎn)向節(jié)的基本受力情況有3種,即:車輪受垂直力、車輪受側(cè)向力和車輪受縱向力。根據(jù)車輛行駛過程中轉(zhuǎn)向節(jié)的受力分析可得:緊急制動工況即為垂直力和縱向力共同作用的組合工況;側(cè)滑工況即為垂直力和側(cè)向力共同作用的組合工況;越過不平路面工況即為垂直力單獨(dú)作用的工況。根據(jù)3種基本受力極限工況下車輪上的動載荷值進(jìn)行計(jì)算,即:
最大垂直動載荷 (5-1)
式中:——動載系數(shù);
——前輪靜載荷;
最大側(cè)向載荷: (5-2)
式中 ——道路附著系數(shù);
最大縱向載荷: (5-3)
式中 ——汽車制動時的重量分配系數(shù),本文取為1.4。
5.2.2 轉(zhuǎn)向節(jié)有限元模型的建立
本文采用CATIA軟件建立了幾何模型,建立模型后將其導(dǎo)入ANSYS軟件中。對轉(zhuǎn)向節(jié)劃分網(wǎng)格,建立的有限元分析模型如圖5-4所示:
圖5-4 有限元分析模型
轉(zhuǎn)向節(jié)的材料為40Cr,其彈性模量E=196GPa,泊松比 ,屈服極限MPa,取安全系數(shù)n=2,則許用應(yīng)力=394MPa。由于40Cr屬于塑性材料,故在進(jìn)行強(qiáng)度計(jì)算時,采用屈服極限作為該材料的極限應(yīng)力。根據(jù)轉(zhuǎn)向節(jié)實(shí)際使用狀態(tài)進(jìn)行約束添加。對轉(zhuǎn)向節(jié)的上下兩個主銷孔進(jìn)行加載約束,轉(zhuǎn)向節(jié)加力點(diǎn)為車輪中心位置。
5.2.3 仿真分析
本文所研究車型參數(shù)如表5-1所示,根據(jù)以上分析對模型進(jìn)行加載,本文給出越過不平路面工況、緊急制動工況和側(cè)滑工況三種危險工況下的分析結(jié)果。
(1)汽車在越過不平路面工況下的轉(zhuǎn)向節(jié)的變形圖和應(yīng)力圖分別如圖5-5和5-6所示。
表5-1整車基本性能參數(shù)表
序號
整車參數(shù)
數(shù)值
1
整車質(zhì)量/kg
2090
2
軸距/mm
2800
3
輪距/mm
1590(前)
4
前軸軸荷(滿載)/kg
765
5
輪胎型號
215/60R16(前)
6
動載系數(shù)
2.0
7
道路附著系數(shù)
0.8
圖5-5 越過不平路面工況下的變形圖
圖5-6 越過不平路面工況下的應(yīng)力圖
轉(zhuǎn)向節(jié)在越過不平路面的工況下進(jìn)行的有限元分析的結(jié)果表明,轉(zhuǎn)向節(jié)的變形量很小,在正?,F(xiàn)行范圍內(nèi)。轉(zhuǎn)向節(jié)的應(yīng)力小于許用應(yīng)力394MPa,所以轉(zhuǎn)向節(jié)的結(jié)構(gòu)設(shè)計(jì)在此危險工況下符合要求。
(2)汽車在緊急制動工況下的轉(zhuǎn)向節(jié)的變形圖和應(yīng)力圖分別如圖5-7和5-8所示。
圖5-7 緊急制動工況下的位移圖
圖5-8 緊急制動工況下的應(yīng)力圖
轉(zhuǎn)向節(jié)在緊急制動的工況下進(jìn)行的有限元分析的結(jié)果表明,轉(zhuǎn)向節(jié)的變形量很小,在正常變形范圍內(nèi)。轉(zhuǎn)向節(jié)的應(yīng)力小于許用應(yīng)力394MPa。所以轉(zhuǎn)向節(jié)的結(jié)構(gòu)設(shè)計(jì)在此危險工況下符合要求。
(3)汽車在側(cè)滑工況下的轉(zhuǎn)向節(jié)的變形圖和應(yīng)力圖分別如圖5-9和5-10所示。
轉(zhuǎn)向節(jié)在緊急制動的工況下進(jìn)行的有限元分析的結(jié)果表明,轉(zhuǎn)向節(jié)的變形量很小,在正