外文文獻翻譯-鏈式自動換刀臂的多階段優(yōu)化設計【中文3500字】【PDF+中文WORD】
外文文獻翻譯-鏈式自動換刀臂的多階段優(yōu)化設計【中文3500字】【PDF+中文WORD】,中文3500字,PDF+中文WORD,外文,文獻,翻譯,鏈式,自動,換刀臂,階段,優(yōu)化,設計,中文,3500,PDF,WORD
鏈式自動換刀臂的多階段優(yōu)化設計
KIM Jae-Hyun, LEE Choon-Man
韓國昌原國立大學機電學院,昌原641-773,
中南大學出版社和柏林海德堡施普林格出版社2012
摘要:為了提高加工效率,刀具更換時間需要有所減少。因此,用于連接到一個自動換刀加工中心的換刀時間將減少。同時自動換刀系統(tǒng)是加工中心的一個重要部分,作為驅(qū)動源。使用商業(yè)代碼ANSYS Workbench V12試圖解釋自動換刀裝置的靜態(tài)屬性,對和自動換刀臂的優(yōu)化設計進行了多級優(yōu)化設計。依靠自動換刀的形狀的優(yōu)化建議,并對結果進行了驗證,獲得可接受的改進。它是能夠獲得一個與初始模型的比較,最大變形,最大應力和質(zhì)量分別減少10.46%,12.89%和9.26%的優(yōu)化模型。同時,實驗設計方法也與常規(guī)的實驗設計方法進行了多級優(yōu)化比較。
關鍵詞:自動換刀裝置;優(yōu)化設計;結構分析;交換臂
1 引言
最近,在機械制造行業(yè)中,模具和機械零件已經(jīng)變成了小批量生產(chǎn)系統(tǒng)。同時,需要提高生產(chǎn)率和切割速度。然而,從實踐觀點看,高質(zhì)量和低成本是有針對性的實際的立場。因此,對于這樣的目標追求實現(xiàn)機床高速加工,實現(xiàn)自動化,縮短交貨時間。結果,它是可能的檢查狀態(tài)的工具和工件在機床使用適當?shù)膫鞲衅?。此外,加工中心的自動換刀裝置(ATC)和一個托盤自動交換裝置(APC)旨在操作無人值守廠24 小時,自動換刀裝置存儲用于加工中心的雜質(zhì)和變化的工具自動為所需的工具。改變這樣的管制的工具正是安裝在主軸[1]。
同時,它是一種先進的優(yōu)勢,由于對機床的干擾少,加工中心操作者可以從事其他工作。也就是說,運營商可以控制其他機床或準備下一個工件,從而減少生產(chǎn)時間。
在這項研究中使用的鏈式ATC代表著許多工具都存儲在一個特征模塊。在工具的改變,兩個臂移動到旋轉180°在直接轉換的方式配置工具更改到下一個工具[2]。因此,有必要同時確保結構特點和設計輕量化。
在實際的工業(yè)領域,優(yōu)化設計是非常重要的。因此,提出了各種機械零件優(yōu)化的各種方法[3]。
宋等人[ 4 ]提出的軸承短優(yōu)化設計提高了學報的人工生命算法。阿萊爾等人[ 5 ]結合結構優(yōu)化的拓撲和形狀的進行推導。BAGCI和艾庫特[ 6 ]提出田口優(yōu)化驗證數(shù)控銑削的最佳表面粗糙度。蘭博迪[ 7 ]提出了一種基于模擬退火算法的桁架結構優(yōu)化設計。塞庫爾斯基[ 8 ]表明,遺傳算法是一種有效的多目標優(yōu)化工具的拓撲結構同時是設計優(yōu)化的設計工具。
SEO等人[ 9 ]提出了形狀優(yōu)化和基于ISO幾何分析的設計的延伸。
在優(yōu)化空管部門,其結構特點的因素和輕量化是彼此相反的[ 10 ]。它顯示了一個權衡,如果追求提高結構輕巧,結構特點,將是一個弱點,如果改進結構特點,對輕量化的實現(xiàn)是很困難的。因此,為了滿足這些相反的因素和優(yōu)化,以不同方式對臂形狀優(yōu)化是通過實驗設計的[ 11 ]。
在這項研究中,比以前的研究獲得更為優(yōu)化的模型 [ 11 ],一個多階段進行的優(yōu)化設計。優(yōu)化設計是利用商業(yè)分析程序,CATIA V5和ANSYS Workbench,分析的有效性是通過比較初始和傳統(tǒng)優(yōu)化模型在這項研究中實現(xiàn)的優(yōu)化模型研究。
2 AT的結構
ATC由三個元素組成,如雜質(zhì),更換部分,和臂部。部分雜志是一種裝置,儲存大量的工具和修改工具使用伺服電機。該變換器部分配備伺服電機,旋轉臂。臂部的嚙合工具是加工中心的旋轉180°主軸和雜志顯示臂形變化。
圖1說明了ATC模擬利用CATIA V5 R17的整個結構。
圖1 就ATC鏈式結構圖
手臂的初始模型進行結構分析。在進行有限元分析的參考后,使用商業(yè)分析程序進行了初步的有限元分析模型,利用ANSYS Workbench的V12。分析是通過最小化在臂的附加部分進行的。在分析方法上,一個十六進制主導的方法應用于一個有限元分析共51794個節(jié)點和13496元素。圖2顯示了手臂的初始有限元模型。
圖2 初始有限元模型的手臂
在分析的邊界條件下,在ATC臂中心孔的支持下,使得重力加速度的應用到整個身體。在負載條件下,負載147 N適用于夾兩端考慮工具的最大重量。
結構分析的結果示于圖3。在夾具的初始模型兩端的最大變形量為5.7487μM。同時,最大應力在截面邊緣產(chǎn)生,這推動了空管部門后4.1762兆帕的手指。
圖3 結構分析:(一)臂的變形分布;(b)的應力分布
3 ARM的多階段優(yōu)化
靜態(tài)順應性FX(= D / F)可通過靜剛度的得出。特別是,對于一些機械結構的機床和工業(yè)機器人要求高精度和加工效率,就成為最重要的靜態(tài)特性以及結構的重量,這些因素是綜合評價,同時。正如上面提到的,靜態(tài)優(yōu)化的問題被確定為這兩個目標函數(shù)的靜態(tài)特性和重量最小化的問題[12]。
因此,在這項研究中,優(yōu)化是為滿足每個目標函數(shù)的一個多級的方式進行。第一階段為提高靜態(tài)特征的階段。通過定義設計因素,減少變形,成為誘導的最佳模型。第二階段是確定為實現(xiàn)其輕量化的一個階段?;诘谝浑A段提出的優(yōu)化模型,形狀優(yōu)化是針對它的重量減少了10%。
3.1第一階段的臂優(yōu)化設計
在第一階段的優(yōu)化設計,優(yōu)化設計的目的是最大限度地減少臂的變形。
圖4說明了手臂的設計變量。
圖4 ATC臂因素
臂的和形狀優(yōu)化設計的一般形式可以通過定義目標函數(shù)和約束條件下的函數(shù)[13-15]。為實現(xiàn)對ATC臂的優(yōu)化設計,形式化定義如下:
其中X代表的設計變量,并σ和δ分別表示應力和變形。同時,σa和σb分別表示為的應力和變形的允許值,。一方面,A,B,和C的設計變量。設計變量的配置±30毫米,不到目前的碰撞干涉的影響在結構上的設計。
在最佳設計中,最佳的解決方案可以最大限度地減少臂的變形同時使用CATIA V5的產(chǎn)品工程優(yōu)化。表1給出了優(yōu)化結果。
圖5說明了該優(yōu)化設計的臂的結構分析結果。在分析中的邊界條件被配置為作為初始模型同樣存在。
表1 優(yōu)化結果減小變形
圖5 減少變形的結構分析優(yōu)化的ARM的:(a)變形分布;(b)的應力分布
3.2第二級臂優(yōu)化設計
實現(xiàn)手臂的輕量化是降低工件成本的重要因素。同時,可以通過引入一個輕量級的結構[ 16 ]改善經(jīng)濟。因此,實現(xiàn)手臂的輕量化優(yōu)化設計是在第二階段進行。在降低質(zhì)量的目標是在10%的基礎上的最佳設計的第一階段提出的模型的手臂。為減少手臂的質(zhì)量,形狀優(yōu)化采用ANSYS Workbench進行形狀優(yōu)化功能。為優(yōu)化設計的形式化可以如下:
Z是一個設計變量,δσ表示顯示壓力和變形,分別和σa和δa表示津貼的應力和變形值。同時,設計變量Φr是配置找到所有部分的質(zhì)量減少可能除了部分,它有一些局限性的設計。
圖6說明了最佳的解決方案,最大限度地減少臂的變形結果。如圖6所示,提出了“部分刪除“代表一個質(zhì)量可部分去除它。根據(jù)研究結果,可部分除去到最高水平。圖7顯示了基于形狀優(yōu)化結果的臂輕量化提出的最佳形狀。
圖6 基于ANSYS的形狀優(yōu)化結果
圖7臂設計
結構分析使用所提出的優(yōu)化設計進行設計。同時,在分析中的邊界條件被施加作為現(xiàn)有的初始模型是相同的。
圖8顯示了結構分析的結果,這是通過施加最佳形狀進行的。
圖8結構分析的輕量化優(yōu)化臂:(a)變形分布;(b)的應力分布
該模型的最大變形采用優(yōu)化設計,從5.748減少7μM在初始模型提出了5μ5.147 m高達10.46%,產(chǎn)生在夾子端作為初始模型相同的。同時,最大應力降低4.176 2兆帕在初始模型3.637 9兆帕高達12.89%。此外,質(zhì)量從7.871 2公斤的初始模型,減少到7.142 5公斤,多達9.26%。
表2給出了比較的結果的優(yōu)化設計[ 11 ]采用多級優(yōu)化設計實現(xiàn)了在這項研究中進行的實驗設計。
表2 結果比較
在本研究中得到的結果與實驗設計的結果比較,最大變形,最大應力,和質(zhì)量的1.38%,12.61%,和5.63%的降低,分別為。因此,可以看出,使用CATIA、ANSYS進行本研究多級設計使得有可能吸引更多的改進優(yōu)化設計比現(xiàn)有的研究。
4 結論
1)采用多級優(yōu)化設計,可以獲得一個優(yōu)化模型,與初始模型的比較最大變形,最大應力和質(zhì)量分別減少10.46%,12.89%,9.26%,。
2)在多級優(yōu)化設計和進行實驗設計與優(yōu)化設計的比較,最大變形,最大應力和質(zhì)量分別減少了1.38%,12.61%和5.63%。
3)通過比較常規(guī)的方法的實驗設計方法結果,提出采用多級優(yōu)化設計,驗證了優(yōu)化設計是否正確進行。
4)基于CATIA、ANSYS商業(yè)軟件使用多級優(yōu)化設計驗證,預計可應用于機床的結構優(yōu)化設計。
參考文獻
[1] LEE S W, LEE H K. Reliability evaluation of ATC for high-speed line center [J]. Journal of Korean Society for Precision Engineering, 2006, 23(6): 111 ? 118. (in Korean)
[2] BARK T Y. The design of automatic tool changer [M]. Korea Advanced Institute of Science Univ Press, 1977: 1? 11. (in Korean)
[3] ROY R, HINDUJA S, TETI R. Recent advances in engineering design optimization: Challenges and future trends [J]. CIRP Annals ? Manufacturing Technology, 2008, 57: 697?715.
[4] SONG J H, YANG B S, CHOI B G, KIM H J. Optimum design of short journal bearings by enhanced artificial life optimization algorithm [J]. Tribology International, 2005, 38(4): 403 ? 412. (in Korean)
[5] ALLAIRE G, JOUVE F, DE GOURNAY F, TOADER A. Combining topological and shape derivatives in structural optimization [C]// European Conference on Computational Mechanics. 2006: 644.
[6] BAGCI E, AYKUT S. A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy [J]. The International Journal of Advanced Manufacturing Technology, 2006, 29(9): 940? 947.
[7] LAMBERTI L. An efficient simulated annealing algorithm for design optimization of truss structures [J]. International Journal of Computers and Structures, 2008, 86: 1936 ? 1953.
[8] SEKULSKI Z. Multi-objective topology and size optimization of high-speed vehicle-passenger catamaran structure by genetic algorithm [J]. Marine Structures, 2009, 22: 691 ?711.
[9] SEO Y D, KIM H J, YOUN S K. Shape optimization and its extension to topological design based on isogeometric analysis [J]. International Journal of Solids and Structures, 2010, 47(11): 1618? 1640. (in Korean)
[10] JIA S, XIN W, XIACONG J, TAEKESHI I. Multi objective optimization based fast motion detector [J]. Lecture Notes in Computer Science, 2011, 6523: 492?502.
[11] KIM J H, LEE M J, LEE C M. Geometric optimal design of an ATC arm using design of experiments [C]// Proceedings of the IASTED International Conference. 2010: 357 ? 362. (in Korean)
[12] LEE Y W, SUNG H G. Multi-phase optimization of quill type machine structures (1) [J]. Journal of Korean Society Precision Engineering, 2001, 18(11): 155?160. (in Korean)
[13] LEE M J, LEE C M. A study on structural analysis and optimum shape design of tilting index table [J]. Journal of Korean Society Precision Engineering, 2009, 27(2): 86? 93. (in Korean)
[14] ARORA J S. Introduction to optimum design, [M]. McGraw-Hill, 2003: 8?9.
[15] KIM H S, LEE Y S. Optimization design technique for reduction of sloshing by evolutionary methods [J]. Journal of Mechanical Science and Technology, 2008, 22(1): 25?33. (in Korean)
[16] KIM J S. A study on the weight-saving design of the boom in high ladder vehicle [J]. Transactions of the Korean Society of Machine Tool Engineers, 2007, 16(2): 8?13. (in Korean)
10
收藏