新高考數(shù)學二輪復習 專題限時集訓9 三角函數(shù)和解三角形(含解析)-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:238295643 上傳時間:2023-12-29 格式:DOC 頁數(shù):12 大?。?21.50KB
收藏 版權(quán)申訴 舉報 下載
新高考數(shù)學二輪復習 專題限時集訓9 三角函數(shù)和解三角形(含解析)-人教版高三數(shù)學試題_第1頁
第1頁 / 共12頁
新高考數(shù)學二輪復習 專題限時集訓9 三角函數(shù)和解三角形(含解析)-人教版高三數(shù)學試題_第2頁
第2頁 / 共12頁
新高考數(shù)學二輪復習 專題限時集訓9 三角函數(shù)和解三角形(含解析)-人教版高三數(shù)學試題_第3頁
第3頁 / 共12頁

本資源只提供3頁預覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

10 積分

下載資源

資源描述:

《新高考數(shù)學二輪復習 專題限時集訓9 三角函數(shù)和解三角形(含解析)-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《新高考數(shù)學二輪復習 專題限時集訓9 三角函數(shù)和解三角形(含解析)-人教版高三數(shù)學試題(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題限時集訓(九) 三角函數(shù)和解三角形 1.(2020·新高考全國卷Ⅰ)在①ac=,②csinA=3,③c=b這三個條件中任選一個,補充在下面問題中,若問題中的三角形存在,求c的值;若問題中的三角形不存在,說明理由. 問題:是否存在△ABC,它的內(nèi)角A,B,C的對邊分別為a,b,c,且sin A=sin B,C=,________? 注:如果選擇多個條件分別解答,按一個解答計分. [解] 方案一:選條件①. 由C=和余弦定理得=. 由sin A=sin B及正弦定理得a=b. 于是=,由此可得b=c. 由①ac=,解得a=,b=c=1. 因此,選條件①時問題中的三角形存

2、在,此時c=1. 方案二:選條件②. 由C=和余弦定理得=. 由sin A=sin B及正弦定理得a=b.于是=,由此可得b=c,B=C=,A=. 由②csin A=3,所以c=b=2,a=6. 因此,選條件②時問題中的三角形存在,此時c=2. 方案三:選條件③. 由C=和余弦定理得=. 由sin A=sin B及正弦定理得a=b. 于是=,由此可得b=c. 由③c=b,與b=c矛盾. 因此,選條件③時問題中的三角形不存在. 2.(2019·全國卷Ⅰ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.設(sin B-sin C)2=sin2A-sin Bsin C. (

3、1)求A; (2)若a+b=2c,求sin C. [解] (1)由已知得sin2B+sin2C-sin2A=sin Bsin C,故由正弦定理得b2+c2-a2=bc. 由余弦定理得cos A==. 因為0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由題設及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sin C,可得cos(C+60°)=-. 由于0°<C<120°,所以sin(C+60°)=, 故sin C=sin(C+60°-60°) =sin(C+60°)cos 60°-cos(C+60°)sin 6

4、0° =. 3.(2019·全國卷Ⅲ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asin=bsin A. (1)求B; (2)若△ABC為銳角三角形,且c=1,求△ABC面積的取值范圍. [解] (1)由題設及正弦定理得sin Asin=sin Bsin A. 因為sin A≠0,所以sin=sin B. 由A+B+C=180°,可得sin=cos,故cos=2sincos. 因為cos≠0,故sin=,因此B=60°. (2)由題設及(1)知△ABC的面積S△ABC=a. 由(1)知A+C=120°. 由正弦定理得a===+. 由于△ABC為銳角三角形,故0

5、°

6、 =25+8-2×5×2× =25. 所以BC=5. 5.(2017·全國卷Ⅰ)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知△ABC的面積為. (1)求sin Bsin C; (2)若6cos Bcos C=1,a=3,求△ABC的周長. [解] (1)由題設得acsin B=,即csin B=. 由正弦定理得sin Csin B=. 故sin Bsin C=. (2)由題設及(1)得cos Bcos C-sin Bsin C=-, 即cos(B+C)=-.所以B+C=,故A=. 由題設得bcsin A=,a=3,所以bc=8. 由余弦定理得b2+c2-bc=

7、9, 即(b+c)2-3bc=9,得b+c=. 故△ABC的周長為3+. 1.(2020·四省八校聯(lián)盟高三聯(lián)考)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知tan A=,tan B=,a=5. (1)求tan C; (2)求△ABC的最長邊. [解] (1)由題意知,tan C=-tan(A+B)=-=-=-3. (2)由(1)知C為鈍角,所以C為最大角, 因為tan A=,所以sin A=,又tan C=-3,所以sin C=. 由正弦定理得=,所以c=,即△ABC的最長邊為. 2.(2020·江西紅色七校第一次聯(lián)考)在△ABC中,角A,B,C的對邊分別為a,

8、b,c,已知acos C+c=b. (1)求角A的值; (2)若b=4,c=6,求cos B的值. [解] (1)由條件acos C+c=b,得sin Acos C+sin C=sin B, 又由sin B=sin(A+C),得sin Acos C+sin C=sin Acos C+cos Asin C. 由sin C≠0,得cos A=,故A=. (2)在△ABC中,由余弦定理a2=b2+c2-2bccos A及b=4,c=6,A=,得a2=28,故a=2, 法一:cos B==. 法二:由=得sin B=,因為b<a,所以B<A,B∈,故cos B==. 3.(2020·

9、貴陽模擬)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2bcos B=acos C+ccos A. (1)求角B的大??; (2)若b=2,求△ABC面積的最大值. [解] (1)∵2bcos B=acos C+ccos A, ∴由正弦定理得2sin Bcos B=sin Acos C+sin Ccos A, ∴2sin Bcos B=sin(A+C),又sin B≠0,sin(A+C)=sin B,∴2cos B=1. ∴cos B=, 又B∈(0,π),∴B=. (2)∵b=2,B=, ∴由余弦定理得4=a2+c2-2accos B=a2+c2-ac≥2ac-ac=

10、ac,即ac≤4(當且僅當a=c=2時“=”成立), ∴S△ABC=acsin B=ac≤×4=, ∴當且僅當a=c=2時,△ABC的面積取得最大值. 4.(2020·濟寧模擬)在△ABC中,∠A=90°,點D在BC邊上.在平面ABC內(nèi),過D作DF⊥BC且DF=AC. (1)若D為BC的中點,且△CDF的面積等于△ABC的面積,求∠ABC; (2)若∠ABC=45°,且BD=3CD,求cos∠CFB. [解] (1)因為D是BC的中點,所以CD=BC. 由題設知,DF=AC,×CD×DF=×AB×AC,因此CD=AB. 所以AB=BC,因此∠ABC=60°. (2)不妨設AB

11、=1,由題設知BC=.由BD=3CD得BD=,CD=. 由勾股定理得CF=,BF=. 由余弦定理得cos∠CFB==. 5.(2020·煙臺模擬)在①f (x)的圖象關于直線x=對稱,②f (x)的圖象關于點對稱,③f (x)在上單調(diào)遞增這三個條件中任選一個,補充在下面的問題中,若問題中的正實數(shù)a存在,求出a的值;若a不存在,說明理由. 已知函數(shù)f (x)=4sin+a(ω∈N*)的最小正周期不小于,且________,是否存在正實數(shù)a,使得函數(shù)f (x)在上有最大值3? [解] 由于函數(shù)f (x)的最小正周期不小于,所以≥,所以1≤ω≤6,ω∈N*. 若選擇①,即f (x)的圖象

12、關于直線x=對稱,則有ω+=kπ+(k∈Z),解得ω=k+(k∈Z),由于1≤ω≤6,ω∈N*,k∈Z,所以k=3,ω=4. 此時,f (x)=4sin+a. 由x∈,得4x+∈,因此當4x+=,即x=時,f (x)取得最大值4+a,令4+a=3,解得a=-1,不符合題意. 故不存在正實數(shù)a,使得函數(shù)f (x)在上有最大值3. 若選擇②,即f (x)的圖象關于點對稱,則有ω+=kπ(k∈Z), 解得ω=k-(k∈Z),由于1≤ω≤6,ω∈N*,k∈Z,所以k=1,ω=3. 此時,f (x)=4sin+a. 由x∈,得3x+∈,因此當3x+=,即x=時,f (x)取得最大值4sin

13、+a=++a,令++a=3,解得a=3--,不符合題意. 故不存在正實數(shù)a,使得函數(shù)f (x)在上有最大值3. 若選擇③,即f (x)在上單調(diào)遞增, 則有(k∈Z), 解得由于1≤ω≤6,ω∈N*,k∈Z,所以ω=1. 此時,f (x)=4sin+a. 由x∈,得x+∈,因此當x+=,即x=時,f (x)取得最大值2+a,令2+a=3,解得a=3-2,符合題意. 故存在正實數(shù)a=3-2,使得函數(shù)f (x)在上有最大值3. 6.(2020·青島模擬)在△ABC中,已知a,b,c分別是角A,B,C的對邊,bcos C+ccos B=4,B=. 請在下列三個條件①(a+b+c)(s

14、in A+sin B-sin C)=3asin B,②b=4,③csin B=bcos C中任意選擇一個,添加到題目的條件中,求△ABC的面積. 注:如果選擇多個條件分別解答,按第一個解答計分. [解] 因為bcos C+ccos B=4,所以由余弦定理得b·+c·=4,解得a=4. 若選擇條件①,即(a+b+c)(sin A+sin B-sin C)=3asin B, 在△ABC中,由正弦定理得(a+b+c)(a+b-c)=3ab,所以(a+b)2-c2=3ab,整理得a2+b2-c2=ab, 所以由余弦定理得cos C=,又C∈(0,π),故C=. 又B=,所以A=π--=.

15、 由=,得b===4(-1), 故△ABC的面積S=absin C=×4×4(-1)×sin=4(3-). 若選擇條件②,即b=4, 因為B=,所以由=,得sin A===. 因為A∈(0,π),所以A=或A=. 由于b>a,所以B>A,因此A=不合題意,舍去,故A=, 則C=π--=, 故△ABC的面積S=absin C=×4×4×sin=4(+1). 若選擇條件③,即csin B=bcos C, 在△ABC中,由正弦定理可得sin Csin B=sin Bcos C,易知sin B≠0, 所以tan C=.因為C∈(0,π),所以C=, 又B=,所以A=π--=,

16、由=,得b===4(-1), 故△ABC的面積S=absin C=×4×4(-1)×sin=4(-1). 7.(2020·濱州模擬)已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且其面積為S. ①=,②||2=·,③S=. (1)請從以上三個條件中任選2個,并求角B; (2)在(1)的基礎上,點D在AB邊上,若sin∠CAD=sin∠ACD,求sin∠CDB. 注:如果選擇多個條件分別解答,按第一個解答計分. [解] 對于條件①,由正弦定理得=,則tan A=tan B,可得A=B. 對于條件②,由||2=·可得||2-·=0,即·(+)=·=0,則C=. 對于條件③,

17、易得×bcsin A=, 即4×sin A×=, 即sin A=cos A,得tan A=,故A=. 若選①②, (1)易得△ABC是以角C為直角的等腰直角三角形,所以B=. (2)由sin∠CAD=sin∠ACD,可得CD=AD, 不妨設AD=1,則CD=,設AC=x,由余弦定理可得=, 得x=,所以BC=AC=. 在△BCD中,=,所以sin∠CDB=. 若選②③, (1)易得△ABC是以角C為直角的直角三角形,又A=,所以B=. (2)由sin∠CAD=sin∠ACD,可得CD=AD, 不妨設AD=1,則CD=,設AC=x,由余弦定理可得cos=,得x=2. 故

18、由勾股定理的逆定理可得CD⊥AD,所以sin∠CDB=1. 若選①③, (1)則易知△ABC為正三角形,可得B=. (2)因為△ABC為正三角形,所以A=, 又sin∠CAD=sin∠ACD,所以sin∠ACD=,所以∠ACD=, 所以CD⊥AB,所以sin∠CDB=1. 8.(2020·威海模擬)在①(2a+b)sin A+(2b+a)sin B=2csin C,②a=csin A-acos C,③△ABC的面積S△ABC=(a2+b2-c2)這三個條件中任選一個,補充在下面的問題中,作為問題的條件,再解答這個問題. 在△ABC中,角A,B,C的對邊分別是a,b,c,若c=,且

19、________,探究△ABC的周長l是否存在最大值?若存在,求出l的最大值;若不存在,說明理由. 注:如果選擇多個條件分別解答,按第一個解答計分. [解] 若選①,因為(2a+b)sin A+(2b+a)sin B=2csin C, 所以由正弦定理可得(2a+b)a+(2b+a)b=2c2, 即a2+b2-c2=-ab,所以cos C==-, 因為C∈(0,π),所以C=. 又c=,所以由正弦定理可得===2,所以a=2sin A,b=2sin B, 則l=a+b+c=2sin A+2sin B+=2sin A+2sin+=sin A+cos A+=2sin+, 因為0<A<

20、,所以2<2sin+≤2+. 即△ABC的周長l存在最大值,且最大值為2+. 若選②,因為a=csin A-acos C, 所以由正弦定理可得sin A=sin Csin A-sin Acos C, 因為sin A≠0,所以sin C-cos C=1, 所以sin=,又0<C<π,故C=, 又c=,所以由正弦定理可得===2, 所以a=2sin A,b=2sin B, 則l=a+b+c=2sin A+2sin B+=2sin A+2sin+=3sin A+cos A+=2sin+, 因為0<A<,所以2<2sin+≤3, 即△ABC的周長l存在最大值,且最大值為3. 若選③,因為△ABC的面積S△ABC=(a2+b2-c2), 所以absin C=(a2+b2-c2), 所以sin C=×, 由余弦定理可得sin C=cos C,即tan C=, 又因為0<C<π,故C=, 又c=,所以由正弦定理可得===2, 所以a=2sin A,b=2sin B, 則l=a+b+c=2sin A+2sin B+=2sin A+2sin+=2sin+, 因為0<A<,所以2<2sin+≤3, 即△ABC的周長l存在最大值,且最大值為3.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!