《高中數(shù)學(xué)蘇教版必修五 第3章 不等式 第3章 單元測(cè)試A 課時(shí)作業(yè)含答案》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)蘇教版必修五 第3章 不等式 第3章 單元測(cè)試A 課時(shí)作業(yè)含答案(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 精品資料
第3章 不等式(A)
(時(shí)間:120分鐘 滿(mǎn)分:160分)
一、填空題(本大題共14小題,每小題5分,共70分)
1.若A=(x+3)(x+7),B=(x+4)(x+6),則A、B的大小關(guān)系為_(kāi)_______.
2.原點(diǎn)和點(diǎn)(1,1)在直線x+y=a兩側(cè),則a的取值范圍是________.
3.不等式<的解集是____________.
4.若不等式ax2+bx-2>0的解集為,則a+b等于________.
5.設(shè)變量x,y滿(mǎn)足約束條件則目標(biāo)函數(shù)z=4x+2y的最大值為_(kāi)_______.
6.若不等式x2
2、+px+q<0的解集是{x|10,a≠1)的圖象恒過(guò)定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中mn>0,則+的最小值為_(kāi)_______.
8.周長(zhǎng)為+1的直角三角形面積的最大值為_(kāi)______________________________.
9.若不等式組的整數(shù)解只有-2,則k的取值范圍是________.
10.若x,y滿(mǎn)足約束條件,目標(biāo)函數(shù)z=ax+2y僅在點(diǎn)(1,0)處取得最小值,則a的取值范圍是________.
11.如果a>b,給出下列不等式:
①<;②a3>b3;③>;④
3、2ac2>2bc2;⑤>1;⑥a2+b2+1>ab+a+b.
其中一定成立的不等式的序號(hào)是________.
12.若x,y∈R+,且2x+8y-xy=0,則x+y的最小值為_(kāi)_______.
13.若實(shí)數(shù)x,y滿(mǎn)足則的取值范圍是________.
14.一批貨物隨17列貨車(chē)從A市以v千米/小時(shí)勻速直達(dá)B市,已知兩地鐵路線長(zhǎng)400千米,為了安全,兩列貨車(chē)的間距不得小于2千米,那么這批貨物全部運(yùn)到B市,最快需要________小時(shí).
二、解答題(本大題共6小題,共90分)
15.(14分)若不等式(1-a)x2-4x+6>0的解集是{x|-3
4、-a)x-a>0;
(2)b為何值時(shí),ax2+bx+3≥0的解集為R.
16.(14分)解關(guān)于x的不等式56x2+ax-a2<0.
17.(14分)證明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).
18.(16分)某投資人打算投資甲、乙兩個(gè)項(xiàng)目,根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確??赡艿馁Y金虧損不超過(guò)1.8萬(wàn)元,問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少
5、萬(wàn)元,才能使可能的盈利最大?
19.(16分)設(shè)a∈R,關(guān)于x的一元二次方程7x2-(a+13)x+a2-a-2=0有兩實(shí)根x1,x2,且0
6、去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用f(x);
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫(xiě)出你的結(jié)論,并說(shuō)明理由.
第3章 不等式(A)
答案
1.A0?x<0或x>2.
4.-13
解析 ∵-2和-是ax2+bx-2=0的兩根.
∴,∴.
∴a+b=-13.
5.10
解析 畫(huà)出可行域如圖中陰影部分所示,目標(biāo)函數(shù)z=4x+2y可轉(zhuǎn)化為y=-2x+,
作出直線y=-2x并平移,顯然當(dāng)其過(guò)點(diǎn)A時(shí)縱截距最大.
解方程組得A(2,1),
∴z
7、max=10.
6.{x|x≥2或x≤1}
解析 ≥0?≥0?≥0.
∴不等式的解集為{x|x≥2或x≤1}.
7.8
解析 因?yàn)楹瘮?shù)y=loga(x+3)-1,當(dāng)x+3=1時(shí),函數(shù)值y恒等于-1,所以A(-2,-1).
又因?yàn)辄c(diǎn)A在直線mx+ny+1=0上,所以2m+n=1.
所以+=(+)(2m+n)=4++,
又因?yàn)閙n>0,即>0,>0.
所以+=4++≥8(當(dāng)且僅當(dāng)m=,n=時(shí)取等號(hào)).
8.
解析 設(shè)直角三角形的兩條直角邊邊長(zhǎng)分別為a、b,則+1=a+b+≥2+,解得ab≤,當(dāng)且僅當(dāng)a=b=時(shí)取“=”,所以直角三角形面積S≤,
即S的最大值為.
9.-
8、3≤k<2
解析 x2-x-2>0?x<-1或x>2.
2x2+(5+2k)x+5k<0?(2x+5)(x+k)<0.
在數(shù)軸上考察它們的交集可得-3≤k<2.
10. (-4,2)
解析 作出可行域如圖所示,
直線ax+2y=z僅在點(diǎn)(1,0)處取得最小值,
由圖象可知-1<-<2,
即-40,b<0,則>,故①不成立;
②∵y=x3在x∈R上單調(diào)遞增,且a>b.
∴a3>b3,故②成立;
③取a=0,b=-1,知③不成立;
④當(dāng)c=0時(shí),ac2=bc2=0,2ac2=2bc2,
故④不成立;
⑤取a=1,b=-1,知
9、⑤不成立;
⑥∵a2+b2+1-(ab+a+b)=[(a-b)2+(a-1)2+(b-1)2]>0,
∴a2+b2+1>ab+a+b,故⑥成立.
12.18
解析 由2x+8y-xy=0,得y(x-8)=2x,
∵x>0,y>0,∴x-8>0,得到y(tǒng)=,
則μ=x+y=x+=x+=(x-8)++10≥2+10
=18,當(dāng)且僅當(dāng)x-8=,即x=12,y=6時(shí)取“=”.
13.(-∞,-1)∪(1,+∞)
解析 可行域如圖陰影,的幾何意義是區(qū)域內(nèi)點(diǎn)與(1,0)連線的斜率,易求得>1或<-1.
14.8
解析 這批貨物從A市全部運(yùn)到B市的時(shí)間為t,則
t==+≥2 =
10、8(小時(shí)),
當(dāng)且僅當(dāng)=,即v=100時(shí)等號(hào)成立,此時(shí)t=8小時(shí).
15.解 (1)由題意知1-a<0且-3和1是方程(1-a)x2-4x+6=0的兩根,
∴,解得a=3.∴不等式2x2+(2-a)x-a>0
即為2x2-x-3>0,解得x<-1或x>.
∴所求不等式的解集為.
(2)ax2+bx+3≥0,即為3x2+bx+3≥0,
若此不等式解集為R,則b2-433≤0,∴-6≤b≤6.
16.解 原不等式可化為(7x+a)(8x-a)<0,
即<0.
①當(dāng)-<,即a>0時(shí),-,即a<0時(shí),
11、知,當(dāng)a>0時(shí),原不等式的解集為;
當(dāng)a=0時(shí),原不等式的解集為?;
當(dāng)a<0時(shí),原不等式的解集為.
17.證明 ∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,
∴2(a4+b4+c4)≥2(a2b2+b2c2+c2a2)
即a4+b4+c4≥a2b2+b2c2+c2a2.
又a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,
c2a2+a2b2≥2a2bc.
∴2(a2b2+b2c2+c2a2)≥2(ab2c+abc2+a2bc),
即a2b2+b2c2+c2a2≥abc(a+b+c).
∴a4+b4+c4≥abc(a+b+c).
12、
18.解 設(shè)投資人分別用x萬(wàn)元、y萬(wàn)元投資甲、乙兩個(gè)項(xiàng)目,由題意知
目標(biāo)函數(shù)z=x+0.5y.
上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.
作直線l0:x+0.5y=0,并作平行于直線l0的一組直線x+0.5y=z,z∈R,與可行域相交,其中有一條直線經(jīng)過(guò)可行域上的M點(diǎn),且與直線x+0.5y=0的距離最大,這里M點(diǎn)是直線x+y=10和0.3x+0.1y=1.8的交點(diǎn).
解方程組
得x=4,y=6,此時(shí)z=14+0.56=7(萬(wàn)元).
∵7>0,∴當(dāng)x=4,y=6時(shí),z取得最大值.
答 投資人用4萬(wàn)元投資甲項(xiàng)目、6萬(wàn)元投資乙項(xiàng)目,才能在確保虧損不超過(guò)1
13、.8萬(wàn)元的前提下,使可能的盈利最大.
19.解 設(shè)f(x)=7x2-(a+13)x+a2-a-2.
因?yàn)閤1,x2是方程f(x)=0的兩個(gè)實(shí)根,且0