高中數(shù)學(xué)蘇教版選修21 第3章 空間向量與立體幾何 第3章 單元檢測A卷

上傳人:仙*** 文檔編號:41972136 上傳時間:2021-11-24 格式:DOC 頁數(shù):12 大?。?99KB
收藏 版權(quán)申訴 舉報 下載
高中數(shù)學(xué)蘇教版選修21 第3章 空間向量與立體幾何 第3章 單元檢測A卷_第1頁
第1頁 / 共12頁
高中數(shù)學(xué)蘇教版選修21 第3章 空間向量與立體幾何 第3章 單元檢測A卷_第2頁
第2頁 / 共12頁
高中數(shù)學(xué)蘇教版選修21 第3章 空間向量與立體幾何 第3章 單元檢測A卷_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學(xué)蘇教版選修21 第3章 空間向量與立體幾何 第3章 單元檢測A卷》由會員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué)蘇教版選修21 第3章 空間向量與立體幾何 第3章 單元檢測A卷(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 第3章 單元檢測(A卷) (時間:120分鐘 滿分:160分) 一、填空題(本大題共14小題,每小題5分,共70分) 1.已知向量a=(2,-1,3),b=(-4,2,x),使a⊥b成立的x與使a∥b成立的x分別為________. 2.設(shè)a=(x,4,3),b=(3,2,z),且a∥b,則xz的值為________. 3.已知直線l與平面α垂直,直線l的一個方向向量為u=(1,-3,z),向量v=(3,-2,1)與平面α平行,則z=______. 4.若向量(1,0,z)與向量(2,1,2)的夾角的余弦值為,

2、則z=________. 5.已知a、b、c是不共面的三個向量,則下列選項中能構(gòu)成空間一個基底的一組向量是________.(填序號) ①2a,a-b,a+2b; ②2b,b-a,b+2a; ③a,2b,b-c; ④c,a+c,a-c. 6.設(shè)點C(2a+1,a+1,2)在點P(2,0,0)、A(1,-3,2)、B(8,-1,4)確定的平面上,則a=________. 7.設(shè)直線a,b的方向向量是e1,e2,平面α的法向量是n,則下列命題中錯誤的是________.(寫出所有錯誤命題的序號) ①b∥α;  ②a∥b; ③b∥α; ?、躡⊥α. 8.如圖所示, 已知正四

3、面體ABCD中,AE=AB,CF=CD,則直線DE和BF所成角的余弦值為________. 9.二面角的棱上有A、B兩點,直線AC、BD分別在這個二面角的兩個半平面內(nèi),且都垂直于AB.已知AB=4,AC=6,BD=8,CD=2,則該二面角的大小為________. 10.若兩個不同平面α,β的法向量分別為u=(1,2,-1),v=(-3,-6,3),則α與β的關(guān)系為________. 11.在三棱柱ABC—A1B1C1中,底面是棱長為1的正三角形,側(cè)棱AA1⊥底面ABC,點D在棱BB1上,且BD=1,若AD與平面AA1C1C所成的角為α,則sin α的值是________. 12.如果

4、平面的一條斜線與它在這個平面上的射影的方向向量分別是a=(1,0,1),b=(0,1,1),那么這條斜線與平面所成的角是________. 13.已知力F1=(1,2,3),F(xiàn)2=(-2,3,-1),F(xiàn)3=(3,-4,5),若F1,F(xiàn)2,F(xiàn)3共同作用于同一物體上,使物體從M1(0,-2,1)移到M2(3,1,2),則合力作的功為________. 14.若a=(2x,1,3),b=(1,-2y,9),且a∥b,則x=______,y=______. 二、解答題(本大題共6小題,共90分) 15.(14分)如圖,四棱錐P-ABCD中,底 面ABCD為矩形,PA⊥底面ABCD,PA=

5、AB=,點E是棱PB的中點.證明:AE⊥平面PBC. 16.(14分)在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,若F是AE的中點.求證:DF∥平面ABC. 17.(14分) 如圖,在空間四邊形OABC中,OA=8,AB=6,AC=4,BC=5,∠OAC=45,∠OAB=60,求OA與BC所成角的余弦值.

6、 18.(16分) 如圖所示,已知點P在正方體ABCD—A′B′C′D′的對角線BD′上,∠PDA=60. (1)求DP與CC′所成角的大小; (2)求DP與平面AA′D′D所成角的大?。? 19.(16分)在四棱錐P—ABCD中,底面ABCD是一直角梯形,∠BAD=90,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD與底面所成的角為30. (1)若AE⊥PD,垂足為E,求證:BE⊥PD

7、; (2)求異面直線AE與CD所成角的余弦值. 20.(16分) 如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=,CE=EF=1. (1)求證:CF⊥平面BDE; (2)求二面角A-BE-D的大?。? 第3章 空間向量與立體幾何(A) 1.,-6 解析 若a⊥b,則-8-2+3x=0,x=; 若a

8、∥b,則2∶(-4)=(-1)∶2=3∶x,x=-6. 2.9 解析 ∵a=(x,4,3),b=(3,2,z),且a∥b, ∴存在實數(shù)λ使得a=λb, ∴ 解得∴xz=9. 3.-9 解析 ∵l⊥α,∴u⊥v,∴(1,-3,z)(3,-2,1)=0,即3+6+z=0,∴z=-9. 4.2或 解析 由題知 ==, 即2z2-5z+2=0,得z=2或. 5.③ 解析 ∵a,b不共線,由共線向量定理知由a,b表示出的向量與a,b共面,即①、②中的向量因共面不能構(gòu)成空間一個基底,同理④中的三向量也不能構(gòu)成空間一個基底. 6.16 解析?。?-1,-3,2),=(6,-1,4

9、). 根據(jù)共面向量定理,設(shè)=x+y(x、y∈R), 則(2a-1,a+1,2)=x(-1,-3,2)+y(6,-1,4)=(-x+6y,-3x-y,2x+4y), ∴ 解得x=-7,y=4,a=16. 7.① 8. 解析 因四面體ABCD是正四面體,頂點A在底面BCD內(nèi)的射影為△BCD的垂心,所以有BC⊥DA,AB⊥CD.設(shè)正四面體的棱長為4,則=(+)(+)=0+++0=41cos 120+14cos 120=-4,BF=DE==,所以異面直線DE與BF的夾角θ的余弦值為: cos θ==. 9.60 解析 由條件,知=0,=0,=++. ∴||2=||2+||2+||2

10、+2+2+2 =62+42+82+268cos〈,〉=(2)2, ∴cos〈,〉=-,即〈,〉=120,所以二面角的大小為60. 10.α∥β 解析 ∵v=-3u,∴v∥u.故α∥β. 11. 解析  如圖所示,建立坐標(biāo)系,易求點D, 平面AA1C1C的一個法向量是 n=(1,0,0), 所以cos〈n,〉==, 即sin α=. 12.60 解析 ∵cos θ==,∴θ=60. 13.16 解析 合力F=F1+F2+F3=(2,1,7),F(xiàn)對物體作的功 即為W=F=(2,1,7)(3,3,1)=23+13+71=16. 14.?。? 解析 ∵a∥b,∴=

11、=, ∴x=,y=-. 15.證明 如圖所示,以A為坐標(biāo)原點,射線AB、AD、AP分別為x軸、y軸、z軸的正半軸,建立空間直角坐標(biāo)系A(chǔ)—xyz. 設(shè)D(0,a,0), 則B(,0,0),C(,a,0), P(0,0,),E(,0,). 于是=(,0,),=(0,a,0),=(,a,-), 則=0,=0. 所以⊥,⊥, 即AE⊥BC,AE⊥PC. 又因為BC∩PC=C, 所以AE⊥平面PBC. 16.證明 如圖所示,以點B為原點,BA、BC、BE所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,則 B(0,0,0),A(2,0,0),C(0,2,0),D(0,

12、2,1),E(0,0,2). 由中點坐標(biāo)公式知F(1,0,1). ∴=(1,-2,0),=(0,0,2). ∵BE⊥平面ABC, ∴是平面ABC的一個法向量. ∵=(1,-2,0)(0,0,2)=0, ∴⊥. 又∵DFD平面ABC,∴DF∥平面ABC. 17.解 因為=-, 所以=- =||||cos〈,〉-||||cos〈,〉 =84cos 135-86cos 120 =-16+24. 所以cos〈,〉= ==. 即OA與BC所成角的余弦值為. 18.解 如圖所示,以D為原點,DA為單位長度建立空間直角坐標(biāo)系D—xyz. (1)=(1,0,0),=(0,0,

13、1). 連結(jié)BD,B′D′. 在平面BB′D′D中, 延長DP交B′D′于H. 設(shè)=(m,m,1) (m>0),由已知〈,〉=60, 由 =||||cos〈,〉, 可得2m=. 解得m=,所以=. 因為cos〈,〉 ==, 所以〈,〉=45,即DP與CC′所成的角為45. (2)平面AA′D′D的一個法向量是=(0,1,0). 因為cos〈,〉==, 所以〈,〉=60, 可得DP與平面AA′D′D所成的角為30. 19.(1)證明 以A為坐標(biāo)原點, 建立如圖所示空間直角坐標(biāo)系A(chǔ)—xyz, 由題意知A(0,0,0),B(a,0,0),C(a,a,0),

14、D(0,2a,0). ∵PD在底面的射影是DA, 且PD與底面所成的角為30, ∴∠PDA=30,∴P,∵AE⊥PD, ∴||=||=a,E, ∴=,=, ∴=0(-a)+2a+=0, ∴⊥,即BE⊥PD. (2)解 由(1)知=, =(-a,a,0), ∴=,又||=a,||=a, ∴cos〈,〉==, ∴異面直線AE與CD所成角的余弦值為. 20.(1)證明 因為正方形ABCD和四邊形ACEF所在的平面互相垂直,且CE⊥AC,所以CE⊥平面ABCD. 如圖,以C為原點,建立空間直角坐標(biāo)系C-xyz. 則C(0,0,0),A(,,0), B(0,,0),D(,0,0),E(0,0,1),F(xiàn)(,,1). 所以=(,,1),=(0,-,1),=(-,0,1). 所以=0-1+1=0, =-1+0+1=0. 所以⊥,⊥,即CF⊥BE,CF⊥DE. 又BE∩DE=E,所以CF⊥平面BDE. (2)解 由(2)知,=(,,1)是平面BDE的一個法向量. 設(shè)平面ABE的法向量n=(x,y,z), 則n=0,n=0, 即 所以x=0,且z=y(tǒng). 令y=1,則z=,所以n=(0,1,). 從而cos〈n,〉==. 因為二面角A-BE-D為銳角, 所以二面角A-BE-D的大小為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!