高考數(shù)學文科一輪總復習 43

上傳人:仙*** 文檔編號:43051199 上傳時間:2021-11-29 格式:DOC 頁數(shù):6 大?。?15.50KB
收藏 版權(quán)申訴 舉報 下載
高考數(shù)學文科一輪總復習 43_第1頁
第1頁 / 共6頁
高考數(shù)學文科一輪總復習 43_第2頁
第2頁 / 共6頁
高考數(shù)學文科一輪總復習 43_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高考數(shù)學文科一輪總復習 43》由會員分享,可在線閱讀,更多相關(guān)《高考數(shù)學文科一輪總復習 43(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 精品資料 第3講 三角函數(shù)的圖象與性質(zhì) 基礎(chǔ)鞏固題組 (建議用時:40分鐘) 一、填空題 1.函數(shù)y=lg(sin x)+的定義域為________. 解析 要使函數(shù)有意義必須有 即解得 ∴2kπ<x≤+2kπ(k∈Z), ∴函數(shù)的定義域為. 答案 (k∈Z) 2.函數(shù)y=(0<x<π)的最小值為________. 解析 令sin x=t∈(0,1],則函數(shù)y=1+,t∈(0,1].又y=1+在t∈(0,1]上是減函數(shù),所以當t=1時,y取得最小值2. 答案 2 3.函數(shù)f(x)=2sin xcos x的最小正

2、周期是________,奇偶性為________. 解析 f(x)=2sin xcos x=sin 2x,即函數(shù)為最小正周期為π的奇函數(shù). 答案 π 奇函數(shù) 4.(2014·徐州聯(lián)考)已知函數(shù)f(x)=sin -1(ω>0)的最小正周期為,則f(x)的圖象的一條對稱軸方程是________. ①x=;②x=;③x=;④x= 解析 依題意得,=,|ω|=3,又ω>0,因此ω=3,所以3x+=kπ+,解得x=+,當k=0時,x=. 因此函數(shù)f(x)的圖象的一條對稱軸方程是x=. 答案 ① 5.已知函數(shù)f(x)=sin(x+θ)+cos(x+θ)是偶函數(shù),則θ的值為____

3、____. 解析 據(jù)已知可得f(x)=2sin,若函數(shù)為偶函數(shù),則必有θ+=kπ+(k∈Z),又由于θ∈,故有θ+=,解得θ=,經(jīng)代入檢驗符合題意. 答案  6.(2014·濟南調(diào)研)已知f(x)=sin2 x+sin xcos x,則f(x)的最小正周期和單調(diào)增區(qū)間分別為________、________. 解析 由f(x)=sin2x+sin xcos x =+sin 2x =+=+sin. ∴T==π.又∵2kπ-≤2x-≤2kπ+, ∴kπ-≤x≤kπ+(k∈Z)為函數(shù)的單調(diào)遞增區(qū)間. 答案 π [kπ-,kπ+](k∈Z) 7.(2014·三明

4、模擬)已知函數(shù)f(x)=2sin(ωx+φ)對任意x都有f =f ,則f 等于________. 解析 由f =f 知,函數(shù)圖象關(guān)于x=對稱,f 是函數(shù)f(x)的最大值或最小值. 答案 -2或2 8.已知函數(shù)f(x)=3sin(ωx-)(ω>0)和g(x)=3cos(2x+φ)的圖象的對稱中心完全相同,若x∈,則f(x)的取值范圍是______. 解析 由兩三角函數(shù)圖象的對稱中心完全相同,可知兩函數(shù)的周期相同,故ω=2,所以f(x)=3sin,那么當 x∈時,-≤2x-≤, 所以-≤sin(2x-)≤1,故f(x)∈. 答案  二、解答題 9.(2013·潮州二

5、模)已知函數(shù)f(x)=(sin2 x-cos2x)-2sin xcos x. (1)求f(x)的最小正周期; (2)設x∈,求f(x)的單調(diào)遞增區(qū)間. 解 (1)∵f(x)=-(cos2x-sin2 x)-2sin xcos x =-cos 2x-sin 2x=-2sin, ∴f(x)的最小正周期為π. (2)∵x∈,∴-≤2x+≤π, 當y=sin單調(diào)遞減時,f(x)單調(diào)遞增. ∴≤2x+≤π,即≤x≤. 故f(x)的單調(diào)遞增區(qū)間為. 10.(1)求函數(shù)y=2sin 的值域; (2)求函數(shù)y=sin x+cos x+sin xcos x的值域. 解 (1)∵-<x<,

6、∴0<2x+<, ∴0<sin≤1, ∴y=2sin的值域為(0,2]. (2)y=sin xcos x+sin x+cos x =+sin =sin2+sin- =2-1,所以當sin=1時, y取最大值1+-=+. 當sin=-時,y取最小值-1, ∴該函數(shù)值域為. 能力提升題組 (建議用時:25分鐘) 一、填空題 1.(2013·安徽師大附中模擬)設ω>0,m>0,若函數(shù)f(x)=msin cos在區(qū)間上單調(diào)遞增,則ω的取值范圍是________. 解析 f(x)=msin cos =msin ωx,若函數(shù)在區(qū)間上單調(diào)遞增,則=≥+=,即ω∈. 答

7、案  2.已知函數(shù)f(x)=2sin ωx(ω>0)在區(qū)間上的最小值是-2,則ω的最小值等于________. 解析 ∵f(x)=2sin ωx(ω>0)的最小值是-2,此時ωx=2kπ-,k∈Z,∴x=-,k∈Z,∴-≤-≤0,k∈Z,∴ω≥-6k+且k≤0,k∈Z,∴ωmin=. 答案  3.已知定義在R上的函數(shù)f(x)滿足:當sin x≤cos x時,f(x)=cos x,當sin x>cos x時,f(x)=sin x. 給出以下結(jié)論: ①f(x)是周期函數(shù); ②f(x)的最小值為-1; ③當且僅當x=2kπ(k∈Z)時,f(x)取得最小值; ④當且僅當2kπ-<x<

8、(2k+1)π(k∈Z)時,f(x)>0; ⑤f(x)的圖象上相鄰兩個最低點的距離是2π. 其中正確的結(jié)論序號是________. 解析 易知函數(shù)f(x)是周期為2π的周期函數(shù). 函數(shù)f(x)在一個周期內(nèi)的圖象如圖所示. 由圖象可得,f(x)的最小值為-,當且僅當x=2kπ+(k∈Z)時,f(x)取得最小值;當且僅當2kπ-<x<(2k+1)π(k∈Z) 時,f(x)>0;f(x)的圖象上相鄰兩個最低點的距離是2π.所以正確的結(jié)論的序號是①④⑤. 答案?、佗堍? 二、解答題 4.(2013·荊門調(diào)研)已知函數(shù)f(x)=a+b. (1)若a=-1,求函數(shù)f(x)的單調(diào)增區(qū)間; (2)若x∈[0,π]時,函數(shù)f(x)的值域是[5,8],求a,b的值. 解 f(x)=a(1+cos x+sin x)+b =asin+a+b. (1)當a=-1時,f(x)=-sin+b-1, 由2kπ+≤x+≤2kπ+(k∈Z), 得2kπ+≤x≤2kπ+(k∈Z), ∴f(x)的單調(diào)增區(qū)間為(k∈Z). (2)∵0≤x≤π,∴≤x+≤, ∴-≤sin≤1,依題意知a≠0. (ⅰ)當a>0時,∴a=3-3,b=5. (ⅱ)當a<0時, ∴a=3-3,b=8. 綜上所述,a=3-3,b=5或a=3-3,b=8.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!