數(shù)控銑床二維精密工作臺(tái)設(shè)計(jì)
喜歡這套資料就充值下載吧。資源目錄里展示的都可在線預(yù)覽哦。下載后都有,請(qǐng)放心下載,文件全都包含在內(nèi),有疑問(wèn)咨詢QQ:414951605 或 1304139763
桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)說(shuō)明書(shū)報(bào)告用紙 第26頁(yè) 共26頁(yè)
編號(hào):
畢業(yè)設(shè)計(jì)(論文)外文翻譯
(譯文)
題 目: 數(shù)控銑床二維精密
工作臺(tái)設(shè)計(jì)
院 (系): 機(jī)電工程學(xué)院
專 業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化
學(xué)生姓名: 盧 林
學(xué) 號(hào): 0800110218
指導(dǎo)教師: 劉 夫 云
職 稱: 教 授
題目類型:¨理論研究 ¨實(shí)驗(yàn)研究 t工程設(shè)計(jì) ¨工程技術(shù)研究 ¨軟件開(kāi)發(fā)
2012年5月23日
一種低成本的7個(gè)自由度機(jī)器手
Morgan Quigley, Alan Asbeck, and Andrew Ng
摘要:
我們提出一種新的低成本彈性機(jī)械手的設(shè)計(jì)。這個(gè)設(shè)計(jì)是獨(dú)一無(wú)二的,其性能達(dá)到所設(shè)想的任務(wù)(無(wú)反沖,重復(fù)性動(dòng)作分辨率為3mm,速度1.5米/秒,2公斤的有效載荷),但比同類機(jī)器手顯著降低零部件成本。本文探討了為實(shí)現(xiàn)這一目標(biāo)我們?cè)趦r(jià)格和性能的組合設(shè)計(jì)中的決策和作出權(quán)衡。這是一個(gè)新的安全的設(shè)計(jì):近端使用步進(jìn)電機(jī)與一系列彈性連接提供四個(gè)自由度,非彈性連接提供遠(yuǎn)端的三自由度。我們尤其是在人類的安全和控制性上對(duì)這個(gè)折衷的設(shè)計(jì)進(jìn)行了討論。手臂可用于煎餅的烹飪(澆面糊,翻轉(zhuǎn)煎餅),以及使用機(jī)械手進(jìn)行交互動(dòng)作。
1 簡(jiǎn)介
許多機(jī)器手是非常昂貴的,這主要是因?yàn)椴捎酶呔茯?qū)動(dòng)器和定制加工的組件。我們建議機(jī)器人操縱研究推進(jìn)應(yīng)更迅速,如果采用合理的性能的設(shè)計(jì)將大大降低了價(jià)格。降低成本可以使機(jī)械手臂被廣泛地采用,反過(guò)來(lái)可以導(dǎo)致一個(gè)更快的進(jìn)步,在許多其他領(lǐng)域也是一樣的。然而,大幅降低成本,將導(dǎo)致設(shè)計(jì)權(quán)衡和妥協(xié)。
在機(jī)器手設(shè)計(jì)中有諸多因素需要考慮,例如有效載荷,速度,行程,重復(fù)性,人類安全和成本,以上僅是舉幾例。在機(jī)器手的研究,這些方面比其他方面更為重要如:抓取與對(duì)對(duì)象的操作,高重復(fù)性和低反沖。必須有足夠的有效載荷抓取所研究的對(duì)象。當(dāng)然如果在靠近工作人員或者在課堂上使用機(jī)器手,人的安全性是至關(guān)重要的。
機(jī)器手技術(shù)研究的某些領(lǐng)域,需要高帶寬,高速操控。然而,在許多研究中速度和帶寬可能不那么重要。例如,在對(duì)象的操作,服務(wù)機(jī)器人,或其他利用復(fù)雜的視覺(jué)處理和對(duì)運(yùn)動(dòng)進(jìn)行大量任務(wù)規(guī)劃,通常需要大量的時(shí)間進(jìn)行計(jì)算。在實(shí)際機(jī)器手的方案中,要求這結(jié)果占總?cè)蝿?wù)的時(shí)間百分比盡量的小。此外,在許多實(shí)驗(yàn)室設(shè)置,機(jī)械手運(yùn)動(dòng)往往故意放緩速度給操作員的時(shí)間來(lái)響應(yīng)意外碰撞或無(wú)意的舉動(dòng)。
在本文中,我們提出一個(gè)機(jī)器手設(shè)計(jì),它具有高端研究機(jī)器人所有的性能,但是大大降低單位成本,僅有4135美元。
一個(gè)產(chǎn)品花費(fèi)包括設(shè)計(jì)費(fèi)用、測(cè)試費(fèi)用、包裝和可能的技術(shù)支持的話費(fèi),所以在研究原型上直接比較成本是很困難的。然而,我們記錄了我們的機(jī)械手的成本,主要是為了與目前的商業(yè)化生產(chǎn)者提供一個(gè)粗略的成本對(duì)比。
我們的實(shí)驗(yàn)結(jié)果表明,采用毫米級(jí)的重復(fù)性可以顯著實(shí)現(xiàn)低成本,無(wú)需使用3-D加工工序來(lái)構(gòu)建機(jī)械手。
圖1 本文中描述的低成本的柔性機(jī)器人。
以下為必須確保的因素,用來(lái)保證手臂操縱研究是有益的:
宏觀工作區(qū)
7個(gè)自由度
至少有2公斤有效載荷(4.4磅的有效載荷)
人類安全:
——符合或容易來(lái)回通行
——飛行質(zhì)量在4公斤下
精度3毫米重復(fù)性
至少在1.0米/秒的最大速度
零背隙
為了滿足這些要求,盡可能降低的成本,我們開(kāi)發(fā)了一個(gè)新的ARM設(shè)計(jì)。手臂使用成本低步進(jìn)電機(jī)連接同步帶和使用電纜驅(qū)動(dòng)器,同時(shí)為實(shí)現(xiàn)無(wú)反沖的性能,減少成本,我們將使用結(jié)構(gòu)緊湊的減速機(jī)。為了實(shí)現(xiàn)人類安全,我們使用一系列彈性的設(shè)計(jì),并通過(guò)使電機(jī)接近地面最大限度地減小了機(jī)械手的飛行質(zhì)量。
本文的一個(gè)簡(jiǎn)要概述如下。第二章給出其他機(jī)器人研究中使用的機(jī)器人手概述。第三章為機(jī)械手的設(shè)計(jì)提供了一個(gè)概述,討論了其獨(dú)特的驅(qū)動(dòng)方案的利弊。第四章,討論了一系列符合要求的規(guī)格。第五章、第六章和第七章討論了檢測(cè),性能和控制,第八章討論了機(jī)器人的應(yīng)用關(guān)于手臂煎餅的任務(wù),其次是一個(gè)結(jié)論。
2 相關(guān)研究
2.1機(jī)器手研究
在機(jī)器人研究中已經(jīng)大量使用的機(jī)器手。它們有許多獨(dú)特的功能和設(shè)計(jì)標(biāo)準(zhǔn),在這一章,我們討論一些最近被廣泛使用有影響力的機(jī)器人手。
Barrett WAM[2] [3]被稱為電纜驅(qū)動(dòng)機(jī)器人,它具有高速來(lái)回運(yùn)動(dòng)平穩(wěn),運(yùn)行速度快。它有高速(3米/秒)的操作和重復(fù)性精度高達(dá)2毫米。
Meka A2系列彈性機(jī)械手[4],用于與人類互動(dòng);當(dāng)然定制機(jī)器人系列彈性武器包括COG,domo,Obrero,Twendy-1,和agile ARM [5] [6] [7] [8] [9]。 Meka機(jī)械手和Twendy使用諧波傳動(dòng)減速器,同時(shí)使用行星齒輪變速箱。domo,Obrero,agile機(jī)械手使用滾珠絲杠。這些機(jī)器手都使用各自不同的機(jī)制的彈性裝置。這些機(jī)械手有較低的控制帶寬(小于5赫茲),但是似乎沒(méi)有出現(xiàn)操縱性問(wèn)題限制其研究使用。斯坦福大學(xué)開(kāi)發(fā)了幾個(gè)使用宏微型驅(qū)動(dòng)的方法的機(jī)械手,結(jié)合系列彈性元件與一個(gè)小馬達(dá)驅(qū)動(dòng)器用來(lái)增加帶寬[10] [11]。
PR2的機(jī)器人[12] [13]有一個(gè)獨(dú)特的系統(tǒng),采用了被動(dòng)的重力補(bǔ)償機(jī)制,使機(jī)械手浮動(dòng)在任何位置。因?yàn)槭直鄣拇蟛糠仲|(zhì)量被機(jī)構(gòu)支持,使用相對(duì)較小的電機(jī)就可以移機(jī)械手和支承有效載荷。這些小型電機(jī)很安全,因?yàn)樗麄兛梢院苋菀讈?lái)回移動(dòng),并且使用低齒輪傳動(dòng)比。
DLR—LWR 三型機(jī)械手[14],Schunk輕型機(jī)械手[15],和Robonaut [16]全部采用電機(jī)直接安裝在連接處,通過(guò)諧波傳動(dòng)減速器連接,提供零背隙的快速運(yùn)動(dòng)。這些機(jī)械手著更高有效載荷,對(duì)比在本節(jié)中討論的其他機(jī)械手,有效載荷范圍從3-14公斤。他們沒(méi)有過(guò)多的考慮人類安全,有比較大的飛行質(zhì)量(DLR—LWR 三型機(jī)械手接近14公斤),雖然DLR-LWR III將遠(yuǎn)端力/力矩傳感器合并,但必須使用手臂的高帶寬才能在檢測(cè)到碰撞迅速停止的時(shí)候。
在前面討論過(guò)的機(jī)械臂,都是那些市面上都比較昂貴,終端用戶購(gòu)買(mǎi)價(jià)格遠(yuǎn)高于100,000美元。然而,有幾個(gè)例子可以用于低成本的機(jī)器手研究。例如Dynamaid機(jī)器人的手臂[17]和Robotis Dynamixel機(jī)器人伺服系統(tǒng)構(gòu)建輕便小巧。該機(jī)器人具有安全工作區(qū),但有效載荷較低相對(duì)于其他機(jī)械手臂(1公斤)。其總成本至少為3500美元,這僅是Dynamixel舵機(jī)的價(jià)格。
庫(kù)卡youBot手臂是一個(gè)新的5自由度機(jī)器人手臂[18]。它有一個(gè)比較小的工作區(qū),剛好差不多超過(guò)0:5立方米,0.1毫米的可重復(fù)性,有效載荷0.5公斤。它的定制了緊湊的電機(jī)和減速機(jī),售價(jià)為14000歐元。
2.2機(jī)器手使用步進(jìn)馬達(dá)
許多機(jī)器人手已使用步進(jìn)電機(jī)。Pierrot 和Dombre [19] [20]討論如何使用步進(jìn)電機(jī)來(lái)制作更加安全的醫(yī)療機(jī)器手,因?yàn)楫?dāng)發(fā)生電子故障事件,步進(jìn)電機(jī)將保持固定,但是傳統(tǒng)的電機(jī)可能會(huì)繼續(xù)旋轉(zhuǎn)。此外,步進(jìn)電機(jī)運(yùn)作時(shí)扭矩相對(duì)接近其最大扭矩,與傳統(tǒng)電機(jī)相比獲得更多的扭矩用于電機(jī)連續(xù)運(yùn)行。
ST機(jī)器人提供了由步進(jìn)電機(jī)驅(qū)動(dòng)的機(jī)械手,它們具有亞毫米重復(fù)性[21]。然而,這些并沒(méi)有為人類安全考慮。所以成本也相對(duì)成本低,例如R17的手臂(5自由度,0.75米工作區(qū),2公斤的有效載荷)的上市為10,950美元。當(dāng)然在20世紀(jì)80年代到90年代存在著幾種其他小,不符合規(guī)定由步進(jìn)電機(jī)驅(qū)動(dòng)的機(jī)器人用于教學(xué)的[22]。例如,的Armdroid機(jī)械臂是5自由度工作區(qū)達(dá)0.6米,它采用同步帶齒輪,采用電纜連接其他機(jī)械手[23]。
3 整體設(shè)計(jì)
機(jī)械手采用一個(gè)近似球形的肩膀和腕,肘相連。機(jī)械手采用聯(lián)合限制和拓?fù)湓O(shè)計(jì),它被安裝在工作臺(tái)高度附近來(lái)執(zhí)行操作任務(wù),與此不同的是類人型機(jī)械手,它必須從肩部垂下,并要求該手臂到安裝的工作區(qū)有一定距離。我們?cè)O(shè)計(jì)的機(jī)械手擁有近180度的工作范圍,允許手臂觸及在地板上的對(duì)象,也可以適應(yīng)在工作臺(tái)的工作。設(shè)計(jì)的機(jī)械手的性質(zhì)和性能所下所示:
到手腕的長(zhǎng)度為 1.0米
總重量 11.4公斤
飛行質(zhì)量 2.0公斤
有效載荷 2.0公斤
最大速度 1.5米/秒
重復(fù)性 3毫米
圖2 近端四自由度的驅(qū)動(dòng)方案
3.1驅(qū)動(dòng)方案
圖2顯示了近端4個(gè)自由度的方案。這些關(guān)節(jié)由步進(jìn)電機(jī)驅(qū)動(dòng),采用同步帶和電纜線路,其次是一系列的彈性聯(lián)軸器。采用同步帶與電纜線路是為了實(shí)現(xiàn)低摩擦傳動(dòng),最小的黏附,零背隙。這使機(jī)械手有較好的分辨率(小于0.5mm),以及在施加外力下不宜出現(xiàn)損壞。結(jié)合步進(jìn)電機(jī),它具有高扭矩低轉(zhuǎn)速的特點(diǎn),這使制造一個(gè)低成本,較高的性能驅(qū)動(dòng)方案稱為可能。但這個(gè)方案的缺點(diǎn)是占據(jù)了比較大的空間,使機(jī)械手近端部分顯得點(diǎn)大。
分兩個(gè)階段使用同步帶以及電纜線路不僅是獲得一個(gè)較大減速比相對(duì)于單一的階段,這也使得電機(jī)接近地面。接近地面電動(dòng)機(jī)有兩個(gè)自由度,肘部和上臂輥電機(jī)關(guān)節(jié)有一個(gè)自由度。通過(guò)將相對(duì)較重的步進(jìn)電機(jī)安裝于地面,飛行臂的質(zhì)量大打折扣:第二個(gè)關(guān)節(jié),手臂是2.0公斤。相比較,一個(gè)典型的成人人的手臂是3.4公斤左右[24]。
兩階段的減速連接,意味著1和第2關(guān)節(jié)和關(guān)節(jié)2,3,4之間為耦合連接。非常幸運(yùn)的是,這種耦合是完全線性的,并可以很容易地估計(jì)為在軟件中的反饋量。同步帶路線和電纜圖連接如圖3所示。經(jīng)過(guò)同步帶電纜線路,采用系列彈性接頭連接電纜絞盤(pán)和輸出鏈路,這些將在在第四部分討論。這些部分采用力傳感器進(jìn)行內(nèi)部的控制反饋,這個(gè)將在第五章說(shuō)明。
遠(yuǎn)端的三自由度采用Dynamixel的RX-64舵機(jī)控制。這些關(guān)節(jié)沒(méi)有遵循限制的扭矩。然而,在三維笛卡爾坐標(biāo)中,由于近端四自由度遵循限制的扭矩,這將產(chǎn)生末端效應(yīng),只有兩個(gè)維度是相同的。
圖3
3.2使用步進(jìn)電機(jī)的權(quán)衡
使用步進(jìn)電機(jī)作為執(zhí)行機(jī)構(gòu),是因?yàn)槠渚哂性S多優(yōu)點(diǎn)。步進(jìn)電機(jī)擅長(zhǎng)在低轉(zhuǎn)速下提供大扭矩,這也是機(jī)械手的目標(biāo)。這樣只需要一個(gè)降速比較低的齒輪減速裝置,這樣就可以由同步帶和電纜驅(qū)動(dòng)器完成。
圖4 用于緊湊型伺服驅(qū)動(dòng)遠(yuǎn)端的三個(gè)關(guān)節(jié)
本文所討論的機(jī)械手,前四個(gè)關(guān)節(jié)減速比分別為6,10,13和13。相比之下,直流電機(jī),通常需要通過(guò)齒輪箱提供一個(gè)更大的減速比,同時(shí)間隙更大造價(jià)更為昂貴。
步進(jìn)電機(jī)作為電磁離合器,當(dāng)有大的力量作用于輸出軸還具有很高的安全性。如果施加力量,扭矩超過(guò)其最大的轉(zhuǎn)矩,步進(jìn)電機(jī)將滑動(dòng),同時(shí)機(jī)械手將移動(dòng)一段距離,直到足以承載輸出端所受扭矩。步進(jìn)保持轉(zhuǎn)矩為最大的移動(dòng)扭矩約60%以上(因此機(jī)械手有較大有效載荷),大的保持轉(zhuǎn)矩避免不必要的打滑。
但是,步進(jìn)電機(jī)作為一種電磁離合器有一些缺點(diǎn)。首先,如果一個(gè)步進(jìn)電機(jī)發(fā)生滑動(dòng),那么機(jī)械手可能需要重新校準(zhǔn)。機(jī)械手使用角度編碼器進(jìn)行狀態(tài)估計(jì),所以閉環(huán)位置可以控制后滑,但力傳感將失效(見(jiàn)第五章)。第二,機(jī)械手步進(jìn)電機(jī)滑后突然移動(dòng)。如果輸出端負(fù)載轉(zhuǎn)矩過(guò)大,后滑發(fā)生后的的步進(jìn)電機(jī)最初提供阻力小,那么機(jī)械手可能與其他物體或人碰撞。添加編碼器步進(jìn)電機(jī)啟用跟蹤轉(zhuǎn)子的位置,能夠更快地停止打滑的電機(jī)。關(guān)于是否采用額外的編碼器是否合理,取決于任務(wù)和關(guān)于意外的高速碰撞的預(yù)期頻率。按照設(shè)想,步進(jìn)電機(jī)滑動(dòng)只是作為最后一層安全性考慮,因此不預(yù)計(jì)這是一個(gè)頻繁運(yùn)作模式。
3.3混合sea/no-sea驅(qū)動(dòng)方案
建議機(jī)械手驅(qū)動(dòng)方案在近端4個(gè)自由度采用一系列彈性的執(zhí)行機(jī)構(gòu)(SEA),但
遠(yuǎn)端的三自由度采用非彈性系列的執(zhí)行機(jī)構(gòu)。遠(yuǎn)端的三自由度比近端4個(gè)自由度的帶寬要高,允許有限的高頻動(dòng)作。這是所描述的類似[25],它采用了宏觀微型驅(qū)動(dòng)方案提供近端的自由度并采用傳統(tǒng)的驅(qū)動(dòng)器更遠(yuǎn)端自由度。
在我們的計(jì)劃中,遠(yuǎn)端三自由度從近端一系列彈性執(zhí)行機(jī)構(gòu)得到好處,包括調(diào)節(jié)位置來(lái)控制力量的能力。這種方法的缺點(diǎn),一個(gè)完整的系列彈性執(zhí)行機(jī)構(gòu)遠(yuǎn)端自由度齒輪更受更多沖擊負(fù)載的影響,因?yàn)檎麄€(gè)手臂的質(zhì)量是有可能超過(guò)設(shè)計(jì)的預(yù)期。
3.4機(jī)械手慣性和系列彈性剛度
系列彈性的機(jī)器手的一個(gè)重要的考量就是臂慣性和系列彈性剛度??紤]一自由度手臂瞬間慣性I[kg.m2]由一個(gè)旋轉(zhuǎn)驅(qū)動(dòng)的扭轉(zhuǎn)剛度k [N.m/radian]。機(jī)械手的固有頻率
。
如果機(jī)械手采用低慣性或彈性聯(lián)軸器,機(jī)械手采用馬達(dá)驅(qū)動(dòng),可能沒(méi)有足夠的扭矩或帶寬,以彌補(bǔ)這種振蕩。普拉特和威廉姆森建議增加手臂的慣性,以消除這種效應(yīng)[26]其他選項(xiàng)包括系列彈性聯(lián)軸器阻尼,保持不變;提高帶寬,降低電機(jī)齒輪減速,在成本較低的有效載荷。對(duì)于人類安全的機(jī)器人手臂降低慣量,這個(gè)問(wèn)題得以解決的。
在我們的機(jī)械手,考慮到關(guān)節(jié),固有頻率f0 = 5.1hz,與K= 86 N.m/radius= 0.083 kgm2。這是符合設(shè)計(jì)對(duì)帶寬的要求以及符合當(dāng)前的使用的齒輪減速電機(jī)。
3.5低成本制造
用幾種方法實(shí)現(xiàn)了低成本的設(shè)計(jì)。步進(jìn)電機(jī)的總成本是700美元。如下所示:
踏步機(jī) $ 700
機(jī)器人舵機(jī) $1335
電子產(chǎn)品 $ 750
硬件 $ 960
編碼器 $ 390
總額為 $4135
另一種是使用具有相同速度/轉(zhuǎn)矩性能的直流有刷電機(jī),并使用行星齒輪減速。雖然他們的價(jià)格更低,但是直流有刷電機(jī)采用廉價(jià)的減速機(jī)性能并不良好,反沖度超過(guò)1度。如果采用高性能減速機(jī)將會(huì)增加成本。例如,一個(gè)零隙諧波傳動(dòng)執(zhí)行機(jī)構(gòu)的成本超過(guò)1000美元,提供足夠的扭矩?zé)o刷行星減速器和0.75度反彈將花費(fèi)500美元。
5層膠合板用于現(xiàn)在的原型機(jī)械。這種膠合板生產(chǎn)公差為0.025mm,在激光切割機(jī)(45瓦)取得了優(yōu)異的成績(jī)。木塊銜接,使他們緊密結(jié)合在一起,法蘭軸承和軸也可以安放在這些孔中。如何使這樣的結(jié)構(gòu)適應(yīng)溫度和濕度變化,這種變化是未知的,但在一個(gè)典型的實(shí)驗(yàn)室環(huán)境中,這些都是是相對(duì)恒定的。木材是一種快速的優(yōu)良材料原型,是剛性的,足以滿足重復(fù)性設(shè)計(jì)要求。在今后,我們打算使用折疊鈑金結(jié)構(gòu),這種結(jié)構(gòu)結(jié)構(gòu)更堅(jiān)固耐用的。這種低成本的機(jī)器手將使用鈑金件,是這個(gè)方向的第一步。折疊金屬件制造精度不算太高,但校準(zhǔn)技術(shù)可以用來(lái)制造誤差的補(bǔ)償。
其他技術(shù)來(lái)保持成本低,是為了避免使用定制件。零部件成本如前面所思所示。當(dāng)然還沒(méi)有包括在激光切割機(jī)的時(shí)間和裝配時(shí)間的費(fèi)用;激光切需要2.5小時(shí),整體制作裝配一個(gè)手臂大約需要15個(gè)小時(shí)。
4 系列規(guī)格
機(jī)器手在近端四個(gè)自由度使用兼容的耦合關(guān)節(jié)。主要是提高安全性,讓手臂步進(jìn)電機(jī)即不能來(lái)回移動(dòng),也可以使用力傳感器進(jìn)行測(cè)量。
一個(gè)耦合連接如圖5所示。它主要是用類似的彈性聯(lián)軸器來(lái)連接[27] [28][29]。在關(guān)節(jié)處,電纜電路(1)通過(guò)軸承輸出連接在輸出軸上(2)。在絞盤(pán)上采用聚氨酯材料的管穿過(guò)。通過(guò)中間有兩個(gè)孔的絞盤(pán),減少中間兩個(gè)板塊連接到輸出鏈路。 每孔含有聚氨酯管(3),這是在絞盤(pán)壓縮板和側(cè)孔之間的輸出鏈路。在圖5(右),絞盤(pán)(4)固定的,有外部力量(F)作用于他。這導(dǎo)致聚氨酯管(5)壓縮,而其他(6)擴(kuò)大。聚氨酯管最初預(yù)壓縮略大約為其最大可能的壓縮一半,他們將在絞盤(pán)上保持壓縮狀態(tài)。
圖5。左,符合耦合任何外部作用;右,作用力導(dǎo)致旋轉(zhuǎn)。
圖6 通過(guò)其正常運(yùn)行范圍的70%
聚氨酯提供一些機(jī)械阻尼,從而使手臂動(dòng)作表現(xiàn)有些滯后,但有助于消除振蕩。當(dāng)然,彈簧也可以使用在這些位置。聚氨酯在連接方向上有4度左右的活動(dòng)范圍,這就要求有幾毫米的間隙。圖6顯示了在肘關(guān)節(jié)的耦合連接時(shí)剛度和滯后的關(guān)系。
5 傳感器
如前所述,近端四個(gè)自由度的實(shí)現(xiàn)主要是步進(jìn)電機(jī)嵌在底部和連接處。關(guān)于傳感器的一個(gè)關(guān)鍵方面是步進(jìn)電機(jī)內(nèi)在穩(wěn)定性,首先這有一個(gè)假設(shè):步進(jìn)電機(jī)不滑,步進(jìn)電機(jī)可以接受精確的輸入并給出準(zhǔn)確位移,當(dāng)然這需要直接使用光學(xué)編碼器測(cè)量角度。通過(guò)與標(biāo)準(zhǔn)元素的偏轉(zhuǎn)的對(duì)比,從而可以衡量的電機(jī)位置和關(guān)節(jié)角度的差異,從而得以判斷。
電機(jī)步進(jìn)數(shù)的整合主要由嵌入式微控制器控制。當(dāng)傳感器開(kāi)始上電,從而步進(jìn)電機(jī)作為一個(gè)相對(duì)位置開(kāi)始初始化。關(guān)于對(duì)估計(jì)的位置偏移,使與絕對(duì)聯(lián)合角編碼器比較(索引),機(jī)器人帶動(dòng)指數(shù)脈沖,并保持固定。步進(jìn)計(jì)算時(shí),機(jī)器手是固定的,此時(shí)所有編碼器指數(shù)脈沖可以被視為一個(gè)靜態(tài)偏移,這時(shí)允許力傳感校準(zhǔn),當(dāng)然排除滯后或塑性變形的影響。
遠(yuǎn)端三個(gè)自由度采用Robotis Dynamixel,RX - 64舵機(jī),它有一個(gè)內(nèi)部300度的使用范圍。電位器電壓由伺服內(nèi)部采樣。為了簡(jiǎn)化操縱布線,步進(jìn)電機(jī)驅(qū)動(dòng)器和伺服系統(tǒng)共用一個(gè)共同的RS-485總線。傳感器采樣和驅(qū)動(dòng)器在100赫茲下工作。在未來(lái),初始靜態(tài)姿態(tài)估計(jì)由加速度計(jì)提供[30],使新一代安全軌跡到達(dá)編碼器索引脈沖。
6 性能
ARM的性能主要通過(guò)幾個(gè)指標(biāo)來(lái)表現(xiàn)。閉環(huán)重復(fù)性,測(cè)試移動(dòng)交替之間的位置誤差和工作區(qū)周?chē)陌藗€(gè)點(diǎn)。如圖7所示,手臂的位置被記錄后,它返回然后在次前往那個(gè)位置,光電跟蹤系統(tǒng)測(cè)量位置的重復(fù)性。
編碼器記錄檢測(cè)0.036度的變化,對(duì)應(yīng)到機(jī)械手上可以檢測(cè)到0.64mm的變化。步進(jìn)電機(jī)可以在控制下實(shí)現(xiàn)末端0.52毫米變化。向下移動(dòng)機(jī)械手,采用有效的齒輪比和較短的距離卡盤(pán)可以使電機(jī)可以完成更精細(xì)的連續(xù)動(dòng)作。
有效載荷是衡量慢慢地增加重量直到步進(jìn)滑動(dòng)時(shí)最壞情況。最大速度由系統(tǒng)控制機(jī)械手完全伸出向上移動(dòng)最高速率,同時(shí)觀察光電跟蹤系統(tǒng)的速度。這些實(shí)驗(yàn)證明最大有效載荷為2.0公斤,最大速度1.5米/秒。由于編碼器的能力,可以進(jìn)行很小的位移,力傳感可以相當(dāng)準(zhǔn)確地完成測(cè)量位移。
圖7可重復(fù)性的測(cè)試結(jié)果
在工作區(qū)內(nèi)反復(fù)移動(dòng)機(jī)器人之間的位置和8個(gè)地點(diǎn)相距甚遠(yuǎn)。此圖顯示了每個(gè)來(lái)回后到終點(diǎn)位置相應(yīng)的位置,由一個(gè)光電跟蹤系統(tǒng)測(cè)量。測(cè)量精度為0.1毫米。
7 控制和軟件
機(jī)械手的控制使用的標(biāo)準(zhǔn)技術(shù):基于空間的PID閉環(huán)控制,使用聯(lián)合編碼。在笛卡爾坐標(biāo)系下的控制使用逆運(yùn)動(dòng)學(xué)的OROCOS-KDL庫(kù)[31]聯(lián)合控制。采用C++進(jìn)行零空間控制數(shù)值計(jì)算,[32]。一些連接由于重型電機(jī)的位置更接近地面。線性前饋?lái)?xiàng)被添加到關(guān)節(jié)空間控制器進(jìn)行運(yùn)動(dòng)學(xué)計(jì)算。
在Linux下采用系統(tǒng)集成和可視化機(jī)器人操作系統(tǒng)(ROS)[33],以紓緩調(diào)試。 ROS的支持熱插拔的軟件模塊,和信息導(dǎo)致設(shè)置同行插入和刪除數(shù)據(jù)連接。因此,這是可以輕松地交換基本控制器,以支持附加功能,例如,改善力傳感或模擬遵守。
本文中使用的所有軟件和固件作為BSD許可的開(kāi)源軟件:
http://stanford-ros-pkg.googlecode.com
以下展示機(jī)器人的能力,執(zhí)行各項(xiàng)任務(wù),我們創(chuàng)建了一個(gè)低成本的遙操作機(jī)器人系統(tǒng)[34]中描述的類似。結(jié)構(gòu)緊湊,采用價(jià)格低廉的USB設(shè)備還使用MEMS慣性傳感器和磁力計(jì)貼。
圖8 每個(gè)機(jī)器人執(zhí)行器的主要類型的反應(yīng)。
8 應(yīng)用
要探索現(xiàn)實(shí)世界中使用的可行性機(jī)械手,我們創(chuàng)建了一個(gè)演示應(yīng)用程序來(lái)烹飪煎餅。為了實(shí)現(xiàn)這一功能,機(jī)械手遠(yuǎn)端與材料連接的組成鍋鏟和勺子。機(jī)器手通過(guò)軌跡移動(dòng),挖出一勺煎餅面糊,倒入兩個(gè)煎餅,翻轉(zhuǎn)他們,并最終沉積在板(圖11)。關(guān)鍵位置信息將被記錄。機(jī)械手遵循必要的操作特性以簡(jiǎn)化必要的編程:為了獲得可靠的自主完成任務(wù),聯(lián)合線性空間插值移動(dòng)設(shè)定與控制是必要的,在本文提供的視頻顯示。在刮操作過(guò)程中,鍋鏟和燒烤表面保持接觸,憑借與遵守鍋鏟相結(jié)合的一系列彈性的關(guān)節(jié)。當(dāng)然這只是一個(gè)結(jié)果,既不是高帶寬的控制,也不需要為了避免末端效應(yīng)采用準(zhǔn)確的力/力矩傳感器 。
圖9 遙控機(jī)器人的軀干采用低成本的MEMS慣性傳感器
圖10 通過(guò)遙玩國(guó)際象棋
圖11。示范任務(wù):煎餅(見(jiàn)視頻)
9結(jié)論與展望
9.1結(jié)論
我們已經(jīng)提出了一個(gè)低成本的機(jī)器人手臂的設(shè)計(jì)的操縱研究。我們準(zhǔn)備工作空間、同步帶、一個(gè)零背隙由電纜驅(qū)動(dòng)電路減速機(jī)。在電機(jī)的選擇上,我們用步進(jìn)電機(jī),因?yàn)樗麄兙哂械娃D(zhuǎn)速高扭矩,沒(méi)有使用無(wú)刷或有刷交流電機(jī)。機(jī)器人設(shè)想的目標(biāo)應(yīng)用環(huán)境在典型的非結(jié)構(gòu)化環(huán)境的交互在家中或工作場(chǎng)所。在這個(gè)在設(shè)計(jì)中被權(quán)衡,其中一個(gè)重要的設(shè)計(jì)考慮遵守內(nèi)在的機(jī)械安全。本設(shè)計(jì)對(duì)所描述的成本控制權(quán)衡作出了很大努力,采用標(biāo)準(zhǔn)設(shè)計(jì)制造,我們建議可以通過(guò)機(jī)器人的速度上控制,這將對(duì)典型的家庭和工作場(chǎng)所有很大的影響。
9.2今后的工作
我們打算繼續(xù)將簡(jiǎn)化機(jī)制引入,以實(shí)現(xiàn)低成本的目標(biāo)生產(chǎn)合理的高性能機(jī)器人。我們打算繼續(xù)探索低成本的制造技術(shù)功能部件,并期待許多采用更多用低成本金屬技術(shù),允許快速裝配和維修方便,以及減輕重量和增加剛度。
REFERENCES
[1] C. Christensen, The innovator’s dilemma: when new technologies cause great firms to fail. Harvard Business Press, 1997.
[2] B. Rooks, “The harmonious robot,” Industrial Robot: An International Journal, vol. 33, no. 2, pp. 125–130, 2006.
[3] Barrett Technology, Inc., “WAM Arm,” 2010. [Online]. Available:
http://www.barrett.com/robot/products-arm-specifications.htm
[4] Meka Robotics, “A2 compliant arm,” 2009. [Online]. Available:
http://www.mekabot.com/arm.html
[5] R. Brooks, C. Breazeal, M. Marjanovi′c, B. Scassellati, and M. Williamson, “The Cog project: Building a humanoid robot,” Computation for metaphors, analogy, and agents, pp. 52–87, 1999.
[6] A. Edsinger-Gonzales and J. Weber, “Domo: A force sensing humanoid robot for manipulation research,” in 2004 4th IEEE/RAS International Conference on Humanoid Robots, 2004, pp. 273–291.
[7] E. Torres-Jara, “Obrero: A platform for sensitive manipulation,” in 2005 5th IEEE-RAS International Conference on Humanoid Robots, 2005, pp. 327–332.
[8] H. Iwata, S. Kobashi, T. Aono, and S. Sugano, “Design of anthropomorphic 4-dof tactile interaction manipulator with passive joints,” Intelligent Robots and Systems, 2005 (IROS 2005), pp. 1785 – 1790, Aug. 2005.
[9] J. Pratt, B. Krupp, and C. Morse, “Series elastic actuators for high fidelity force control,” Industrial Robot: An International Journal, vol. 29, no. 3, pp. 234–241, 2002.
[10] M. Zinn, B. Roth, O. Khatib, and J. Salisbury, “A new actuation approach for human friendly robot design,” The international journal of robotics research, vol. 23, no. 4-5, p. 379, 2004.
[11] D. Shin, I. Sardellitti, and O. Khatib, “A hybrid actuation approach for human-friendly robot design,” in IEEE Int. Conf. on Robotics and Automation (ICRA 2008), Pasadena, USA, 2008, pp. 1741–1746.
[12] K. Wyrobek, E. Berger, H. der Loos, and J. Salisbury, “Towards a personal robotics development platform: Rationale and design of an intrinsically safe personal robot,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2008, pp. 2165–2170.
[13] Willow Garage, “PR2,” 2010. [Online]. Available: http://www.
willowgarage.com/pages/pr2/specs
[14] G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle, R. Krenn, A. Pascucci, and M. Schedl, “DLR’s torque-controlled light weight robot III- Are we reaching the technological limits now?” in Proceedings- IEEE International Conference on Robotics and Automation, vol. 2, 2002, pp. 1710–1716.
[15] Schunk, “7-DOF LWA Manipulator,” 2010. [Online].
Available: http://www.schunk-modular-robotics.com/left-navigation/service-robotics/components/manipulators.html
[16] R. Ambrose, H. Aldridge, R. Askew, R. Burridge, W. Bluethmann, M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark, “Robonaut: NASA’s space humanoid,” IEEE Intelligent Systems and Their Applications, vol. 15, no. 4, pp. 57–63, 2000.
[17] J. Stuckler, M. Schreiber, and S. Behnke, “Dynamaid, an anthropomorphic robot for research on domestic service applications,” in Proc. of the 4th European Conference on Mobile Robots (ECMR), 2009.
[18] KUKA, “youbot arm,” 2010. [Online]. Available: http://www. kuka-youbot.com
[19] F. Pierrot, E. Dombre, E. D′egoulange, L. Urbain, P. Caron, S. Boudet, J. Gari′epy, and J. Megnien, “Hippocrate: a safe robot arm for medical applications with force feedback,” Medical Image Analysis, vol. 3, no. 3, pp. 285–300, 1999.
[20] E. Dombre, G. Duchemin, P. Poignet, and F. Pierrot, “Dermarob: a safe robot for reconstructive surgery,” IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 876–884, 2003.
[21] S. Robotics, “R17 5-axis robot arm,” 2010. [Online]. Available:
http://www.strobotics.com/
[22] , “The Old Robots Web Site,” 2010. [Online]. Available: http:
//www.theoldrobots.com/robot-robot.html
[23] Colne Robotics, “Armdroid,” 1981. [Online]. Available: http:
//www.senster.com/alex zivanovic/armdroid/index.htm
[24] R. Chandler, C. Clauser, J. McConville, H. Reynolds, and J. Young, Investigation of inertial properties of the human body. NTIS, National Technical Information Service, 1975.
[25] M. Zinn, O. Khatib, B. Roth, and J. Salisbury, “Playing it safe: A new actuation concept for human-friendly robot design,” IEEE Robotics & Automation Magazine, vol. 11, no. 2, pp. 12–21, 2004.
[26] G. Pratt and M. Williamson, “Series elastic actuators,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-95), vol. 1, 1995, pp. 399–406.
[27] A. Kumpf, “Explorations in low-cost compliant robotics,” Master’s thesis, Massachusetts Institute of Technology, 2007.
[28] Y. Bar-Cohen and C. Breazeal, Biologically inspired intelligent robots. Society of Photo Optical, 2003.
[29] N. Tsagarakis, M. Laffranchi, B. Vanderborght, and D. Caldwell, “A compact soft actuator unit for small scale human friendly robots,” in IEEE International Conference on Robotics and Automation Conference (ICRA), 2009, pp. 4356–4362.
[30] M. Quigley, R. Brewer, S. Soundararaj, V. Pradeep, Q. Le, and A. Ng, “Low-cost Accelerometers for Robotic Manipulator Perception.”
[31] H. Bruyninckx, “Open Robot Control Software: the OROCOS Project,” in IEEE International Conference on Robotics and Automation, 2001, pp. 2523–2528.
[32] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.
[33] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,” in Open-source Software Workshop of the International Conference on Robotics and Automation, 2009.
[34] N. Miller, O. Jenkins, M. Kallmann, and M. Mataric, “Motion capture from inertial sensing for untethered humanoid teleoperation,” in 2004 4th IEEE/RAS International Conference on Humanoid Robots, 2004, pp. 547–565.
用三維探頭球測(cè)量5軸數(shù)控機(jī)床的誤差
W. T. Lei and Y. Y. Hsu
摘要
本文對(duì)五坐標(biāo)數(shù)控機(jī)床提出了一種新的測(cè)量裝置和相應(yīng)的精確度測(cè)試的方法。這種裝置名為探頭球,包括一個(gè)三維探頭,一個(gè)延長(zhǎng)塊和一方帶有測(cè)量頭的底板。三維探頭有一個(gè)標(biāo)準(zhǔn)錐度,并有能力完成三自由度位移測(cè)量。延長(zhǎng)塊的自由端有一個(gè)插口。一個(gè)永磁體集成在插口上以致于延長(zhǎng)塊和測(cè)量球可在磁力作用下連接在一起。在安裝完探頭球設(shè)備以后,五軸機(jī)床的該運(yùn)動(dòng)鏈就關(guān)閉了。為了5軸機(jī)床測(cè)量的準(zhǔn)確性,球測(cè)試表面曲線被定義為工具的路徑。該工具的取向是指在表面正常的方向。該球形表面的中心恰好測(cè)試檢測(cè)球的中心。隨著這條路徑和方向投入數(shù)控控制器,三維探頭相對(duì)測(cè)量球的球形測(cè)試表面動(dòng)作。相對(duì)運(yùn)動(dòng)的整體定位誤差被三維測(cè)量探頭檢測(cè)出來(lái),用來(lái)證明5軸機(jī)床的容積準(zhǔn)確性。
1 引言
五軸數(shù)控機(jī)床廣泛用于加工工件的自由曲面。除了傳統(tǒng)的三線性定位軸, 5軸機(jī)床一般還有兩個(gè)旋轉(zhuǎn)軸。所有五個(gè)軸是可以同時(shí)控制來(lái)最優(yōu)化調(diào)整刀具對(duì)工件表面的路徑。5軸機(jī)床的技術(shù)優(yōu)勢(shì)的包括更高的金屬去除率,改善表面光潔度,并顯著降低切削時(shí)間。
在過(guò)去幾十年里,許多工作的重點(diǎn)放在幾何誤差或熱變形對(duì)機(jī)床精度的影響上。許多測(cè)量設(shè)備已開(kāi)發(fā)來(lái)衡量個(gè)別的錯(cuò)誤部分,并把一個(gè)多軸機(jī)床作為一個(gè)整體來(lái)測(cè)精度。最強(qiáng)大,最節(jié)省時(shí)間的設(shè)備是六自由度激光測(cè)量裝置,可用于在同一時(shí)間測(cè)量直線運(yùn)動(dòng)馬車(chē)六個(gè)運(yùn)動(dòng)誤差的組成部分。此外,雙球桿( DBB )常被用來(lái)確定了飼料驅(qū)動(dòng)系統(tǒng)的動(dòng)態(tài)誤差,如增益不匹配,空轉(zhuǎn)和粘滑。為了擴(kuò)大DBB測(cè)量范圍,所謂的激光球桿已經(jīng)開(kāi)發(fā)為能測(cè)量三維工作空間定位誤差的裝置。另一方面,網(wǎng)格編碼特別適合于測(cè)量銳角轉(zhuǎn)角的動(dòng)態(tài)路徑錯(cuò)誤。雖然這些測(cè)量裝置已成功地用來(lái)測(cè)量三軸數(shù)控機(jī)床精度,沒(méi)有測(cè)量裝置可用來(lái)測(cè)試五軸數(shù)控機(jī)床體積準(zhǔn)確性。本文提出了一種新的測(cè)量裝置,探頭球,即能夠測(cè)量5軸機(jī)床的總體定位誤差。
2 探頭測(cè)量裝置
2.1設(shè)計(jì)特點(diǎn)
探頭球如圖1所示。它包括一個(gè)三維探頭,一個(gè)延長(zhǎng)塊和一方帶有測(cè)量頭的底板。三維探頭有標(biāo)準(zhǔn)錐度的刀柄,并能夠測(cè)量三自由度偏差。三維探頭采用光電編碼器的位移傳感器。其他位移傳感器,如線性可變位移傳感器(LVDT型 )或電容傳感器也是可以的。伸長(zhǎng)桿的自由端有個(gè)孔,它和測(cè)量球形成了球窩接頭。一個(gè)永磁體和孔結(jié)合在一起使伸長(zhǎng)桿和測(cè)量球在磁力的作用下連接在了一起。底板被固定在5軸機(jī)床的轉(zhuǎn)盤(pán)上用來(lái)調(diào)整方向。
圖1 探頭球測(cè)量裝置
為了測(cè)量工具和工件之間的定位誤差,探頭安在刀架上,底板固定在轉(zhuǎn)盤(pán)上。在安裝完探頭球測(cè)量裝置,該5軸機(jī)床的運(yùn)動(dòng)鏈就因此關(guān)閉了。測(cè)試路徑可能是球測(cè)試表面的任何曲線。刀具方向是以曲面法線的方向定義的。該球形測(cè)試表面的中心和測(cè)量球的中心重合。球面半徑為三維探頭球的原點(diǎn)和測(cè)量球中心之間的距離。伸長(zhǎng)桿根據(jù)測(cè)試范圍有不同的長(zhǎng)度。把方向和路徑輸入到數(shù)控控制器,三維探頭就以測(cè)量球?yàn)橹行脑谇蛐螠y(cè)試表面上運(yùn)動(dòng)??傮w定位誤差就這樣被三維探頭球測(cè)量出來(lái)了。
由于球面對(duì)稱性質(zhì),它有利于裝入測(cè)量球,因此,測(cè)試表面的中心和轉(zhuǎn)盤(pán)軸就有一個(gè)偏差??紤]到這點(diǎn),在測(cè)量觀察中測(cè)量球應(yīng)該跟底盤(pán)一起旋轉(zhuǎn),這樣5軸才能同時(shí)被驅(qū)動(dòng)。因此,測(cè)量誤差包括了來(lái)自所有軸的誤差。測(cè)量球的偏移和伸長(zhǎng)桿的長(zhǎng)度決定了驅(qū)動(dòng)軸的測(cè)試范圍。
為了確保探頭球裝置本身并不是一個(gè)部分誤差來(lái)源,有必要在它的使用之前進(jìn)行精確的校準(zhǔn)。這些程序包括初始化三維探頭傳感器和在坐標(biāo)測(cè)量機(jī)上對(duì)測(cè)量球準(zhǔn)確定位測(cè)試。在精度測(cè)試中,三維探頭的輸出代表了測(cè)量球相對(duì)于球形測(cè)試表面的偏差。強(qiáng)調(diào)一點(diǎn),探頭球裝置并不能在工件坐標(biāo)系中測(cè)量定位誤差,雖然似乎能。
2.2測(cè)試路徑
如上文所說(shuō),測(cè)試表面可能是球形面上的任何曲面。圖2表示了一些測(cè)試路徑。路徑A沿著測(cè)試表面的經(jīng)線。在這個(gè)路徑上,只有A,Y和Z軸動(dòng)了。A 軸是唯一的主動(dòng)軸,而Y和Z軸是從動(dòng)軸。換句話說(shuō),A軸動(dòng)了,Y和Z軸才跟著動(dòng)的。這個(gè)路徑適合測(cè)試A軸的靜態(tài)和動(dòng)態(tài)誤差。路徑C沿著球形測(cè)試表面的赤道方向。這個(gè)情況下,C軸是主動(dòng)軸,X和Z為從動(dòng)軸。同樣,路徑C適合測(cè)C軸的誤差。路徑F是測(cè)試球形表面的螺旋樣曲線,它涵蓋整個(gè)球形體積。所有機(jī)器軸可同時(shí)在這種情況下驅(qū)動(dòng)。測(cè)量誤差提供足夠的信息來(lái)描述目標(biāo)5軸機(jī)床的總體體積誤差。路徑S是上球面測(cè)試表面上的一個(gè)圓圈。在這種情況下,所有軸往復(fù)驅(qū)動(dòng)。因此路徑S很適合測(cè)試旋轉(zhuǎn)A和C軸的動(dòng)態(tài)誤差。
圖2 測(cè)試路徑
測(cè)量球有很多用途。如果測(cè)總體定位誤差,那么選路徑F。如果它是用來(lái)識(shí)別或估算單軸錯(cuò)誤組成部分,最好是選擇簡(jiǎn)單的測(cè)試路徑,如路徑A或C ,因?yàn)橹挥杏邢薜闹饕M成部分影響測(cè)量結(jié)果。下面,將得出測(cè)試路徑和目標(biāo)5軸機(jī)床的運(yùn)動(dòng)之間的詳細(xì)關(guān)系。
3 運(yùn)動(dòng)變換
由于測(cè)試路徑是在工件坐標(biāo)系中,數(shù)控輸入三維探頭球的準(zhǔn)確性測(cè)量與5軸機(jī)床運(yùn)動(dòng)學(xué)是獨(dú)立的。該機(jī)器結(jié)構(gòu)的特點(diǎn)是對(duì)X和Y表兩自由度一體化,如圖3所示。坐標(biāo)系如圖4所示。
圖3 5軸銑床
圖4 5軸銑床坐標(biāo)系
機(jī)器坐標(biāo)系到工件坐標(biāo)系的轉(zhuǎn)變是傳統(tǒng)所謂的先進(jìn)轉(zhuǎn)變。另一方面,工件坐標(biāo)系到機(jī)器坐標(biāo)系的轉(zhuǎn)變稱為落后轉(zhuǎn)變。5軸機(jī)床的先進(jìn)轉(zhuǎn)變總是可以解決的而且只有一個(gè)解決辦法。相反,考慮到旋轉(zhuǎn)軸的定位落后轉(zhuǎn)變有兩種解決方法。下面,在均勻變換矩陣的幫助下我們將得出機(jī)器坐標(biāo)系和工件坐標(biāo)系的關(guān)系。
假設(shè)(Xm,Ym,Zm)為機(jī)器坐標(biāo)系中的一點(diǎn),而這點(diǎn)在工件坐標(biāo)系這坐標(biāo)為(Xw,Yw,Zw)。為了實(shí)現(xiàn)先進(jìn)轉(zhuǎn)變,首先機(jī)器坐標(biāo)系的原點(diǎn)以矢量(X1,Y1,Z1)移動(dòng)到兩轉(zhuǎn)軸的交點(diǎn)上,接著A軸以θa轉(zhuǎn)動(dòng)C軸以θc轉(zhuǎn)動(dòng)使轉(zhuǎn)盤(pán)垂直。最后,機(jī)床坐標(biāo)系以矢量(X0,Y0,Z0)移動(dòng)到工件坐標(biāo)系上。變換過(guò)程可表示為
因?yàn)榭倳?huì)有兩種解決辦法后,落后的轉(zhuǎn)變,是必要的戰(zhàn)略選擇一個(gè)合適的一個(gè)。一個(gè)簡(jiǎn)單的標(biāo)準(zhǔn)是推動(dòng)能源需要。一個(gè)與移動(dòng)距離較小,將被選中。當(dāng)然碰撞的可能性,必須予以考慮。
4 測(cè)試路徑和誤差模型
4.1在工件坐標(biāo)系中的測(cè)試路徑
如上所述,探頭球設(shè)備使用球形測(cè)試表面上的任何路徑測(cè)試5軸機(jī)床的精度,下面將得出工件坐標(biāo)系中測(cè)試路徑的描述。
圖5表示了定義路徑F的參數(shù),為了盡量減少測(cè)試時(shí)間,路徑F上升角度設(shè)定為90 °大意是,該工具到達(dá)頂端的位置后,C軸旋轉(zhuǎn)360 °。工件坐標(biāo)系中的路徑描述是這樣的:
其中Rw是球形測(cè)試表面的半徑,θ是圓形角。類似的,別的上升角的路徑描述也能同樣得到。
圖5路徑F的參數(shù)
4.2在軸坐標(biāo)系中的測(cè)試路徑
由于落后的運(yùn)動(dòng)轉(zhuǎn)變,工件坐標(biāo)系的測(cè)試路徑和方向轉(zhuǎn)化為機(jī)器或軸坐標(biāo)。圖 6和圖7顯示軸命令值路徑S和f。在案件路徑F中,旋轉(zhuǎn)軸C和A線性驅(qū)動(dòng),而其他軸之后從動(dòng)保持運(yùn)動(dòng)鏈關(guān)閉。在路徑S上,所有的軸來(lái)回動(dòng),最后回到起點(diǎn)。反轉(zhuǎn)點(diǎn)的速度可以查明清楚。正如人們所知的雙球桿測(cè)量技術(shù),這些速度反轉(zhuǎn)點(diǎn)提供必要的條件,顯示動(dòng)態(tài)運(yùn)動(dòng)的錯(cuò)誤,如粘滑,空轉(zhuǎn)和反彈。圖8中,速度反轉(zhuǎn)點(diǎn)出現(xiàn)在A軸的180°和C 軸的120°和210°??梢钥闯觯行┹S也有其速度扭轉(zhuǎn)在同一時(shí)間,例如軸C和X。你還可以使用雙球桿查明動(dòng)態(tài)誤差的線性軸頭。從探頭球裝置的測(cè)試結(jié)果,可確定以后旋轉(zhuǎn)軸A或C的動(dòng)態(tài)誤差。
圖6 測(cè)試路徑F命令值
圖7 測(cè)試路徑S命令值
4.3誤差模型
解釋探頭球的測(cè)量結(jié)果,有必要建立一個(gè)探頭球測(cè)量的誤差模型。模型描述的錯(cuò)誤之間的關(guān)系總體定位誤差測(cè)量的誤差來(lái)源的是5軸機(jī)床運(yùn)動(dòng)鏈每個(gè)組成部分。在同質(zhì)變換矩陣的方法為這一理論的任務(wù)提供了一個(gè)很好的方法。幾何組成部分可分為兩類。第一個(gè)是與一個(gè)不正確的運(yùn)動(dòng)伺服控制軸。第二個(gè)是有關(guān)錯(cuò)誤的鏈接組成部分。對(duì)于每一個(gè)線性或旋轉(zhuǎn)軸,有一般6運(yùn)動(dòng)中的錯(cuò)誤熱媒。錯(cuò)誤的鏈接部分包括軸垂直度誤差和偏移誤差塊部件,如主軸和旋轉(zhuǎn)塊。坐標(biāo)框架中定義圖3 。錯(cuò)誤模型可通過(guò)連續(xù)的產(chǎn)品的所有HTMs每個(gè)運(yùn)動(dòng)的組成部分。工件坐標(biāo)系和參考坐標(biāo)系的關(guān)系是
rTw=rTyyTxxTaaTccTttTw
其中指數(shù)w, t, c, a, x, y, r分別代表工件,轉(zhuǎn)盤(pán),C軸,A軸, X軸, Y軸和參考系的縮寫(xiě)。
同樣,探頭坐標(biāo)系和參考坐標(biāo)系的關(guān)系是
rTp=rTzzTssThhTp
其中p, h, s, z分別代表探頭,刀柄,主軸塊和Z軸的縮寫(xiě)。
5 實(shí)驗(yàn)結(jié)果
圖8表示用三維探頭球測(cè)量目標(biāo)5軸銑床的精度。圖9,10,11表示幾個(gè)測(cè)試結(jié)果。圖10顯示靜力試驗(yàn)的結(jié)果,當(dāng)預(yù)先確定好的點(diǎn)位置確定后進(jìn)行誤差采樣。圖11和圖12顯示動(dòng)態(tài)試驗(yàn)的結(jié)果,當(dāng)軸按輸入的進(jìn)給量運(yùn)動(dòng)時(shí)進(jìn)行誤差采樣。由于A軸不正常的動(dòng)態(tài)旋轉(zhuǎn),隨著進(jìn)給速度的增加,Y方向誤差急劇增加。
圖8 探頭球裝置在測(cè)量
圖9 路徑F的靜態(tài)測(cè)量誤差
圖10 進(jìn)給量為30 mm/min時(shí),路徑F的動(dòng)態(tài)測(cè)量誤差
圖11 進(jìn)給量為150 mm/min時(shí),路徑F的動(dòng)態(tài)測(cè)量誤差
在另一項(xiàng)研究開(kāi)展旨在確定和估計(jì)所有的誤差項(xiàng),三維探頭球的測(cè)量數(shù)據(jù)結(jié)果表明,5軸銑床的主要誤差來(lái)源是兩個(gè)旋轉(zhuǎn)軸的垂直度誤差。
6 總結(jié)
本文提出了一種新的測(cè)量裝置稱為三維探頭球。它能夠測(cè)量五坐標(biāo)數(shù)控機(jī)床的總體定位誤差。誤差測(cè)量的原則是閉鏈測(cè)量。在測(cè)試的準(zhǔn)確性,三維探頭球目標(biāo)5軸機(jī)床運(yùn)動(dòng)鏈的關(guān)閉。由于運(yùn)動(dòng)的限制,適合測(cè)試路徑的路徑為球形測(cè)試表面。測(cè)量定位誤差是指在調(diào)查坐標(biāo)系和可轉(zhuǎn)化為參考坐標(biāo)系,目標(biāo)5軸機(jī)床預(yù)測(cè)的準(zhǔn)確性。隨著三維探頭球可用,進(jìn)一步的調(diào)查,目的是提高機(jī)床的精度,包括估計(jì)和補(bǔ)償?shù)膸缀握`差。
References
[1] E.E. Sprow, Manuf. Eng. 111 (5) (1993) 55.
[2] V.B. Kreng, C.R. Liu, C.N. Chu, Int. J. Adv. Manuf. Technol. 9(1994) 79.
[3] V.S.B. Kiridena, P.M. Ferreira, Int. J. Mach. Tools Manuf. 34 (1)(1994) 85.
[4] V.S.B. Kiridena, P.M. Ferreira, Int. J. Mach. Tools Manuf. 33 (3)(1993) 417.
[5] A.K. Srivastava, S.C. Veldhuis, M.A. Elbestawit, Int. J. Mach. ToolsManuf. 35 (9) (1995) 1321.
[6] K. Lau, Q. Ma, X. Chu, Y. Liu, S. Olson, Technical Reportof Automated Precision Inc., Gaithersburg, MD 20879, USA,2002.
[7] H. Pahk, Y.S. Kim, H.H. Moon, Int. J. Mach. Tools Manuf. 37 (11)(1997) 1583.
[8] N. Srinivasa, J.C. Ziegert, Prec. Eng. 19 (2/3) (1996) 112.
[9] K. Yoshiak, et al., Japan/USA Symp. Flex. Automat. ASME 2 (1996)1202.
[10] A.H. Slocum, Precision Machine Design, Prentice-Hall, Englewood Cliffs, NJ, 1992.
26
收藏
鏈接地址:http://ioszen.com/article/43461165.html