《高三理科數(shù)學(xué) 新課標二輪復(fù)習(xí)專題整合高頻突破習(xí)題:第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練3數(shù)形結(jié)合思想 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《高三理科數(shù)學(xué) 新課標二輪復(fù)習(xí)專題整合高頻突破習(xí)題:第一部分 思想方法研析指導(dǎo) 思想方法訓(xùn)練3數(shù)形結(jié)合思想 Word版含答案(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
思想方法訓(xùn)練3 數(shù)形結(jié)合思想
能力突破訓(xùn)練
1.若i為虛數(shù)單位,圖中網(wǎng)格紙的小正方形的邊長是1,復(fù)平面內(nèi)點Z表示復(fù)數(shù)z,則復(fù)數(shù)z1+i對應(yīng)的點位于復(fù)平面內(nèi)的( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
2.方程sinx-π4=14x的實數(shù)解的個數(shù)是( )
A.2 B.3 C.4 D.以上均不對
3.若x∈{x|log2x=2-x},則( )
A.x2>x>1 B.x2>1>x
C.1>x2>x D.x>1>x2
4.若函數(shù)f(x)=(a-x)|x-3a|(a>0)在區(qū)間(-∞,b]上取得最小值3-4a
2、時所對應(yīng)的x的值恰有兩個,則實數(shù)b的值等于( )
A.22 B.2-2或6-32
C.632 D.2+2或6+32
5.已知函數(shù)f(x)=|lgx|,010,若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( )
A.(1,10) B.(5,6) C.(10,12) D.(20,24)
6.已知函數(shù)f(x)=4x與g(x)=x3+t,若f(x)與g(x)圖象的交點在直線y=x的兩側(cè),則實數(shù)t的取值范圍是( )
A.(-6,0] B.(-6,6) C.(4,+∞) D.(-4,4)
7.“a≤0”是“函數(shù)f(x)=|(a
3、x-1)x|在區(qū)間(0,+∞)上單調(diào)遞增”的( )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件
8.在平面直角坐標系xOy中,若直線y=2a與函數(shù)y=|x-a|-1的圖象只有一個交點,則a的值為 .
9.函數(shù)f(x)=2sin xsinx+π2-x2的零點個數(shù)為 .
10.若不等式9-x2≤k(x+2)-2的解集為區(qū)間[a,b],且b-a=2,則k= .
11.已知定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),若方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個不同的根x1,x2
4、,x3,x4,則x1+x2+x3+x4= .
12.已知函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,0<φ<π2
的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)設(shè)g(x)=fx-π122,求函數(shù)g(x)在x∈-π6,π3上的最大值,并確定此時x的值.
思維提升訓(xùn)練
13.已知函數(shù)f(x)=2-|x|,x≤2,(x-2)2,x>2,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=f(x)-g(x)恰有4個零點,則b的取值范圍是( )
A.74,+∞
B.-∞,74
C
5、.0,74
D.74,2
14.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0使得f(x0)<0,則a的取值范圍是( )
A.-32e,1
B.-32e,34
C.32e,34
D.32e,1
15.在平面上,過點P作直線l的垂線所得的垂足稱為點P在直線l上的投影,由區(qū)域x-2≤0,x+y≥0,x-3y+4≥0中的點在直線x+y-2=0上的投影構(gòu)成的線段記為AB,則|AB|= ( )
A.22 B.4
C.32 D.6
16.(20xx北京,理14)三名工人加工同一種零件,他們在一天中的工作情況如圖所示,其中點Ai的橫、縱坐標分別為第
6、i名工人上午的工作時間和加工的零件數(shù),點Bi的橫、縱坐標分別為第i名工人下午的工作時間和加工的零件數(shù),i=1,2,3.
(1)記Qi為第i名工人在這一天中加工的零件總數(shù),則Q1,Q2,Q3中最大的是 ;
(2)記pi為第i名工人在這一天中平均每小時加工的零件數(shù),則p1,p2,p3中最大的是 .
17.設(shè)函數(shù)f(x)=ax3-3ax,g(x)=bx2-ln x(a,b∈R),已知它們的圖象在x=1處的切線互相平行.
(1)求b的值;
(2)若函數(shù)F(x)=f(x),x≤0,g(x),x>0,且方程F(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.
7、
參考答案
思想方法訓(xùn)練3 數(shù)形結(jié)合思想
能力突破訓(xùn)練
1.D 解析由題圖知,z=2+i,則z1+i=2+i1+i=2+i1+i1-i1-i=32-12i,則對應(yīng)的點位于復(fù)平面內(nèi)的第四象限.故選D.
2.B 解析在同一坐標系內(nèi)作出y=sinx-π4與y=14x的圖象,如圖,可知它們有3個不同的交點.
3.A 解析設(shè)y1=log2x,y2=2-x,在同一坐標系中作出其圖象,如圖,由圖知,交點的橫坐標x>1,則有x2>x>1.
4.D 解析結(jié)合函數(shù)f(x)的圖象(圖略)知,3-4a=-a2,即a=1或a=3.
當(dāng)a=1時,-b
8、2+4b-3=-1(b>3),解得b=2+2;當(dāng)a=3時,-b2+12b-27=-9(b>9),解得b=6+32,故選D.
5.C 解析
作出f(x)的大致圖象.由圖象知,要使f(a)=f(b)=f(c),不妨設(shè)a2,(-2)3+t<-2,解得-6
9、單調(diào)遞增;
當(dāng)a<0,x>0時,f(x)=(-ax+1)x=-ax-1ax,結(jié)合二次函數(shù)的圖象可知f(x)=|(ax-1)x|在區(qū)間(0,+∞)上單調(diào)遞增;
當(dāng)a>0時,函數(shù)f(x)=|(ax-1)x|的圖象大致如圖.
函數(shù)f(x)在區(qū)間(0,+∞)上有增有減,從而“a≤0”是“函數(shù)f(x)=|(ax-1)x|在區(qū)間(0,+∞)上單調(diào)遞增”的充要條件,故選C.
8.-12 解析
在同一坐標系中畫出y=2a和y=|x-a|-1的圖象如圖.由圖可知,要使兩函數(shù)的圖象只有一個交點,則2a=-1,a=-12.
9.2 解析f(x)=2sinxsinx+π2-x2=2sinxcosx
10、-x2=sin2x-x2.
如圖,在同一平面直角坐標系中作出y=sin2x與y=x2的圖象,當(dāng)x≥0時,兩圖象有2個交點,當(dāng)x<0時,兩圖象無交點,
綜上,兩圖象有2個交點,即函數(shù)的零點個數(shù)為2.
10.2
解析令y1=9-x2,y2=k(x+2)-2,在同一個坐標系中作出其圖象,如圖.
∵9-x2≤k(x+2)-2的解集為[a,b],且b-a=2,
結(jié)合圖象知b=3,a=1,即直線與圓的交點坐標為(1,22),∴k=22+21+2=2.
11.-8 解析因為定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),即f(4-x)=f(x).
因此,函數(shù)圖象關(guān)于直線x=
11、2對稱且f(0)=0,
由f(x-4)=-f(x)知f(x-8)=f(x).
又因為f(x)在區(qū)間[0,2]上是增函數(shù),
所以f(x)在區(qū)間[-2,0]上也是增函數(shù),如圖所示(草圖),
方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個不同的根x1,x2,x3,x4,不妨設(shè)x1
12、,-π4<φ-π4<π4,
∴φ-π4=0,即φ=π4,
∴f(x)的解析式為f(x)=2sin32x+π4.
(2)由(1)可得fx-π12
=2sin32x-π12+π4
=2sin32x+π8,
g(x)=fx-π122=41-cos3x+π42=2-2cos3x+π4.
∵x∈-π6,π3,∴-π4≤3x+π4≤5π4,
∴當(dāng)3x+π4=π,即x=π4時,g(x)max=4.
思維提升訓(xùn)練
13.D 解析由f(x)=2-|x|,x≤2,(x-2)2,x>2,得f(x)=2+x,x<0,2-x,0≤x≤2,(x-2)2,x>2,
f(2-x)=2+2-x,2-x<0
13、,2-(2-x),0≤2-x≤2,(2-x-2)2,2-x>2=x2,x<0,x,0≤x≤2,4-x,x>2,
所以f(x)+f(2-x)=x2+x+2,x<0,2,0≤x≤2,x2-5x+8,x>2.
因為函數(shù)y=f(x)-g(x)=f(x)+f(2-x)-b恰有4個零點,
所以函數(shù)y=b與y=f(x)+f(2-x)的圖象有4個不同的交點.
畫出函數(shù)y=f(x)+f(2-x)的圖象,如圖.
由圖可知,當(dāng)b∈74,2時,函數(shù)y=b與y=f(x)+f(2-x)的圖象有4個不同的交點.故選D.
14.D 解析設(shè)g(x)=ex(2x-1),h(x)=a(x-1),則不等式f(x)<0
14、即為g(x)-12時,g(x)>0,函數(shù)g(x)單調(diào)遞增.
所以g(x)的最小值為g-12.
而函數(shù)h(x)=a(x-1)表示經(jīng)過點P(1,0),斜率為a的直線.
如圖,分別作出函數(shù)g(x)=ex(2x-1)與h(x)=a(x-1)的大致圖象.
顯然,當(dāng)a≤0時,滿足不等式g(x)
15、(x)
16、
由x-3y+4=0,x+y=0,得x=-1,y=1,∴C點坐標為(-1,1).
由x=2,x+y=0,得x=2,y=-2,∴D點坐標為(2,-2).
∴|CD|=9+9=32,即|AB|=32.故選C.
16.(1)Q1 (2)p2 解析
(1)連接A1B1,A2B2,A3B3,分別取線段A1B1,A2B2,A3B3的中點C1,C2,C3,顯然Ci的縱坐標即為第i名工人一天平均加工的零件數(shù),由圖可得點C1最高,故Q1,Q2,Q3中最大的是Q1.
(2)設(shè)某工人上午、下午加工的零件數(shù)分別為y1,y2,工作時間分別為x1,x2,則該工人這一天中平均每小時加工的零件數(shù)為p=y1+y
17、2x1+x2=y1+y22x1+x22=kOC(C為點(x1,y1)和(x2,y2)的中點),由圖可得kOC2>kOC1>kOC3,故p1,p2,p3中最大的是p2.
17.解函數(shù)g(x)=bx2-lnx的定義域為(0,+∞).
(1)f(x)=3ax2-3a?f(1)=0,g(x)=2bx-1x?g(1)=2b-1,依題意2b-1=0,得b=12.
(2)當(dāng)x∈(0,1)時,g(x)=x-1x<0,當(dāng)x∈(1,+∞)時,g(x)=x-1x>0.
所以當(dāng)x=1時,g(x)取得極小值g(1)=12.
當(dāng)a=0時,方程F(x)=a2不可能有且僅有四個解.
當(dāng)a<0,x∈(-∞,-1)時,f(x)<0,當(dāng)x∈(-1,0)時,f(x)>0,
所以當(dāng)x=-1時,f(x)取得極小值f(-1)=2a,
又f(0)=0,所以F(x)的圖象如圖①所示.
從圖象可以看出F(x)=a2不可能有四個解.
當(dāng)a>0,x∈(-∞,-1)時,f(x)>0,當(dāng)x∈(-1,0)時,f(x)<0,
所以當(dāng)x=-1時,f(x)取得極大值f(-1)=2a.
又f(0)=0,所以F(x)的圖象如圖②所示.
從圖象看出方程F(x)=a2有四個解,則12