《新編高三文科數(shù)學通用版二輪復習:第1部分 專題6 突破點16 導數(shù)的應用酌情自選 Word版含解析》由會員分享,可在線閱讀,更多相關《新編高三文科數(shù)學通用版二輪復習:第1部分 專題6 突破點16 導數(shù)的應用酌情自選 Word版含解析(11頁珍藏版)》請在裝配圖網上搜索。
1、
突破點16 導數(shù)的應用(酌情自選)
提煉1 導數(shù)與函數(shù)的單調性 (1)函數(shù)單調性的判定方法
在某個區(qū)間(a,b)內,如果f′(x)>0,那么函數(shù)y=f(x)在此區(qū)間內單調遞增;如果f′(x)<0,那么函數(shù)y=f(x)在此區(qū)間內單調遞減.
(2)常數(shù)函數(shù)的判定方法
如果在某個區(qū)間(a,b)內,恒有f′(x)=0,那么函數(shù)y=f(x)是常數(shù)函數(shù),在此區(qū)間內不具有單調性.
(3)已知函數(shù)的單調性求參數(shù)的取值范圍
設可導函數(shù)f(x)在某個區(qū)間內單調遞增(或遞減),則可以得出函數(shù)f(x)在這個區(qū)間內f′(x)≥0(或f′(x)≤0),從而轉化為恒成立問題來解決(注意
2、等號成立的檢驗).
提煉2 函數(shù)極值的判別注意點
(1)可導函數(shù)極值點的導數(shù)為0,但導數(shù)為0的點不一定是極值點,如函數(shù)f(x)=x3,當x=0時就不是極值點,但f′(0)=0.
(2)極值點不是一個點,而是一個數(shù)x0,當x=x0時,函數(shù)取得極值.在x0處有f′(x0)=0是函數(shù)f(x)在x0處取得極值的必要不充分條件.
(3)函數(shù)f(x)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點函數(shù)值中的最大值,函數(shù)f(x)在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點函數(shù)值中的最小值.
提煉3 函數(shù)最值的判別方法
(1)求函數(shù)f(x)在閉區(qū)間a,b]上最值的關鍵是求出f′
3、(x)=0的根的函數(shù)值,再與f(a),f(b)作比較,其中最大的一個是最大值,最小的一個是最小值.
(2)求函數(shù)f(x)在非閉區(qū)間上的最值,只需利用導數(shù)法判斷函數(shù)f(x)的單調性,即可得結論.
回訪1 導數(shù)與函數(shù)的單調性
1.(20xx·全國乙卷)若函數(shù)f(x)=x-sin 2x+asin x在(-∞,+∞)單調遞增,則a的取值范圍是( )
A.-1,1] B.
C. D.
C 取a=-1,則f(x)=x-sin 2x-sin x,f′(x)=1-cos 2x-cos x,但f′(0)=1--1=-<0,不具備在(-∞,+∞)單調遞增的條件,故排除A,B,D.故
4、選C.]
2.(20xx·全國卷Ⅱ)設函數(shù)f′(x)是奇函數(shù)f(x)(x∈R)的導函數(shù),f(-1)=0,當x>0時,xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)
C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)
A 設y=g(x)=(x≠0),則g′(x)=,當x>0時,xf′(x)-f(x)<0,
∴g′(x)<0,∴g(x)在(0,+∞)上為減函數(shù),且g(1)=f(1)=-f(-1)=0.
∵f(x)為奇函數(shù),∴g(x)為偶函數(shù),
∴g(x)的圖象的示意圖如圖所示.
5、
當x>0,g(x)>0時,f(x)>0,00,x<-1,
∴使得f(x)>0成立的x的取值范圍是(-∞,-1)∪(0,1),故選A.]
回訪2 函數(shù)的極值與最值
3.(20xx·全國卷Ⅰ)已知函數(shù)f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是( )
A.(2,+∞) B.(-∞,-2)
C.(1,+∞) D.(-∞,-1)
B f′(x)=3ax2-6x,
當a=3時,f′(x)=9x2-6x=3x(3x-2),
則當x∈(-∞,0)時,f′(x)>0;
x∈時,f′(x
6、)<0;
x∈時,f′(x)>0,注意f(0)=1,f=>0,則f(x)的大致圖象如圖(1)所示.
(1)
不符合題意,排除A、C.
當a=-時,f′(x)=-4x2-6x=-2x(2x+3),則當x∈時,f′(x)<0,x∈時,f′(x)>0,x∈(0,+∞)時,f′(x)<0,注意f(0)=1,f=-,則f(x)的大致圖象如圖(2)所示.
(2)
不符合題意,排除D.]
4.(20xx·北京高考)設函數(shù)f(x)=
(1)若a=0,則f(x)的最大值為________;
(2)若f(x)無最大值,則實數(shù)a的取值范圍是________.
2 a<-1 由當x≤a時,
7、f′(x)=3x2-3=0,得x=±1.
如圖是函數(shù)y=x3-3x與y=-2x在沒有限制條件時的圖象.
(1)若a=0,則f(x)max=f(-1)=2.
(2)當a≥-1時,f(x)有最大值;
當a<-1時,y=-2x在x>a時無最大值,且-2a>(x3-3x)max,所以a<-1.]
熱點題型1 利用導數(shù)研究函數(shù)的單調性問題
題型分析:利用導數(shù)研究函數(shù)的單調性問題常在解答題的第(1)問中呈現(xiàn),有一定的區(qū)分度,此類題涉及函數(shù)的極值點、利用導數(shù)判斷函數(shù)的單調性、不等式的恒成立等.
(20xx·遼寧葫蘆島模擬)已知x=1是f(x)=2x++ln x的一個極值點.
(1)
8、求函數(shù)f(x)的單調遞減區(qū)間;
(2)設函數(shù)g(x)=f(x)-,若函數(shù)g(x)在區(qū)間1,2]內單調遞增,求實數(shù)a的取值范圍.
【導學號:85952067】
解] (1)因為f(x)=2x++ln x,所以f′(x)=2-+,因為x=1是f(x)=2x++ln x的一個極值點,所以f′(1)=2-b+1=0,解得b=3,經檢驗,符合題意,所以b=3.則函數(shù)f(x)=2x++ln x,其定義域為(0,+∞).4分
令f′(x)=2-+<0,解得-<x<1,
所以函數(shù)f(x)=2x++ln x的單調遞減區(qū)間為(0,1].6分
(2)因為g(x)=f(x)-=2x+ln x-,所以g′(
9、x)=2++.8分
因為函數(shù)g(x)在1,2]上單調遞增,所以g′(x)≥0在1,2]上恒成立,即2++≥0在x∈1,2]上恒成立,所以a≥(-2x2-x)max,而在1,2]上,(-2x2-x)max=-3,所以a≥-3.
所以實數(shù)a的取值范圍為-3,+∞).12分
根據函數(shù)y=f(x)在(a,b)上的單調性,求參數(shù)范圍的方法:
(1)若函數(shù)y=f(x)在(a,b)上單調遞增,轉化為f′(x)≥0在(a,b)上恒成立求解.
(2)若函數(shù)y=f(x)在(a,b)上單調遞減,轉化為f′(x)≤0在(a,b)上恒成立求解.
(3)若函數(shù)y=f(x)在(a,b)上單調,轉化為f′(x
10、)在(a,b)上不變號即f′(x)在(a,b)上恒正或恒負.
(4)若函數(shù)y=f(x)在(a,b)上不單調,轉化為f′(x)在(a,b)上變號.
變式訓練1] (20xx·重慶模擬)設函數(shù)f(x)=(a∈R).
(1)若f(x)在x=0處取得極值,確定a的值,并求此時曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若f(x)在3,+∞)上為減函數(shù),求a的取值范圍.
解] (1)對f(x)求導得
f′(x)=
=.2分
因為f(x)在x=0處取得極值,所以f′(0)=0,即a=0.
當a=0時,f(x)=,f′(x)=,故f(1)=,f′(1)=,從而f(x)在點(1
11、,f(1))處的切線方程為y-=(x-1),化簡得3x-ey=0.6分
(2)由(1)知f′(x)=.
令g(x)=-3x2+(6-a)x+a,
由g(x)=0,解得x1=,
x2=.8分
當x<x1時,g(x)<0,即f′(x)<0,
故f(x)為減函數(shù);
當x1<x<x2時,g(x)>0,即f′(x)>0,
故f(x)為增函數(shù);
當x>x2時,g(x)<0,即f′(x)<0,
故f(x)為減函數(shù).
由f(x)在3,+∞)上為減函數(shù),知x2=≤3,解得a≥-,
故a的取值范圍為.12分
熱點題型2 利用導數(shù)研究函數(shù)的極值、最值問題
題型分析:利用導數(shù)研究函數(shù)的極值
12、、最值是高考重點考查內容,主要以解答題的形式考查,難度較大.
(20xx·株洲一模)已知函數(shù)f(x)滿足f(x)=f′(1)ex-1-f(0)x+x2.
(1)求f(x)的解析式及單調區(qū)間;
(2)若f(x)≥x2+ax+b,求(a+1)b的最大值.
解] (1)f(x)=f′(1)ex-1-f(0)x+x2?f′(x)=f′(1)ex-1-f(0)+x,
令x=1,得f(0)=1,所以
f(x)=f′(1)ex-1-x+x2,
令x=0,得f(0)=f′(1)e-1=1,解得f′(1)=e,故函數(shù)的解析式為f(x)=ex-x+x2.3分
令g(x)=f′(x)=ex-1+x
13、,所以g′(x)=ex+1>0,由此知y=g(x)在x∈R上單調遞增.
當x>0時,f′(x)>f′(0)=0;當x<0時,由f′(x)<f′(0)=0得:
函數(shù)f(x)=ex-x+x2的單調遞增區(qū)間為(0,+∞),單調遞減區(qū)間為(-∞,0).6分
(2)f(x)≥x2+ax+b?h(x)=ex-(a+1)x-b≥0,得h′(x)=ex-(a+1).8分
①當a+1≤0時,h′(x)>0?y=h(x)在x∈R上單調遞增,x→-∞時,h(x)→-∞與h(x)≥0矛盾.
②當a+1>0時,h′(x)>0?x>ln(a+1),h′(x)<0?x<ln(a+1),
得當x=ln(a+1)時
14、,h(x)min=(a+1)-(a+1)ln(a+1)-b≥0,即(a+1)-(a+1)ln(a+1)≥b,
所以(a+1)b≤(a+1)2-(a+1)2ln(a+1)(a+1>0).
令F(x)=x2-x2ln x(x>0),則F′(x)=x(1-2ln x),
所以F′(x)>0?0<x<,F(xiàn)′(x)<0?x>,當x=時,
F(x)max=,即當a=-1,b=時,(a+1)b的最大值為.12分
利用導數(shù)研究函數(shù)極值、最值的方法
1.若求極值,則先求方程f′(x)=0的根,再檢查f′(x)在方程根的左右函數(shù)值的符號.
2.若已知極值大小或存在情況,則轉化為已知方程f′(x)
15、=0根的大小或存在情況來求解.
3.求函數(shù)f(x)在閉區(qū)間a,b]上的最值時,在得到極值的基礎上,結合區(qū)間端點的函數(shù)值f(a),f(b)與f(x)的各極值進行比較得到函數(shù)的最值.
變式訓練2] (20xx·全國卷Ⅱ)已知函數(shù)f(x)=ln x+a(1-x).
(1)討論f(x)的單調性;
(2)當f(x)有最大值,且最大值大于2a-2時,求a的取值范圍.
解] (1)f(x)的定義域為(0,+∞),f′(x)=-a.2分
若a≤0,則f′(x)>0,所以f(x)在(0,+∞)上單調遞增.
若a>0,則當x∈時,f′(x)>0;
當x∈時,f′(x)<0.
所以f(x)在上單調
16、遞增,在上單調遞減.6分
(2)由(1)知,當a≤0時,f(x)在(0,+∞)上無最大值;
當a>0時,f(x)在x=處取得最大值,最大值為
f=ln+a=-ln a+a-1.10分
因此f>2a-2等價于ln a+a-1<0.
令g(a)=ln a+a-1,則g(a)在(0,+∞)上單調遞增,g(1)=0.
于是,當01時,g(a)>0.
因此,a的取值范圍是(0,1).12分
熱點題型3 利用導數(shù)解決不等式問題
題型分析:此類問題以函數(shù)、導數(shù)與不等式相交匯為命題點,實現(xiàn)函數(shù)與導數(shù)、不等式及求最值的相互轉化,達成了綜合考查考生解題能力的目的.
17、
(20xx·長沙十三校聯(lián)考)設函數(shù)f(x)=-ax.
(1)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實數(shù)a的最小值;
(2)若存在x1,x2∈e,e2],使f(x1)≤f′(x2)+a成立,求實數(shù)a的取值范圍.
解] (1)由得x>0且x≠1,則函數(shù)f(x)的定義域為(0,1)∪(1,+∞),因為f(x)在(1,+∞)上為減函數(shù),故f′(x)=-a≤0在(1,+∞)上恒成立.
又f′(x)=-a=-2+-a
=-2+-a,
故當=,即x=e2時,f′(x)max=-a.
所以-a≤0,于是a≥,故a的最小值為.4分
(2)命題“若存在x1,x2∈e,e2],使f(x1)
18、≤f′(x2)+a成立”等價于“當x∈e,e2]時,有f(x)min≤f′(x)max+a”.由(1)知,當x∈e,e2]時,f′(x)max=-a,
∴f′(x)max+a=.5分
問題等價于:“當x∈e,e2]時,有f(x)min≤”.
①當a≥時,由(1)知,f(x)在e,e2]上為減函數(shù),
則f(x)min=f(e2)=-ae2≤,故a≥-.6分
②當a<時,由x∈e,e2]得≤≤1,
∴f′(x)=-2+-a在e,e2]上的值域為.7分
(ⅰ)-a≥0,即a≤0,f′(x)≥0,在e,e2]上恒成立,故f(x)在e,e2]上為增函數(shù),
于是,f(x)min=f(e)=
19、e-ae≥e>,不合題意.8分
(ⅱ)-a<0,即00,f(x)為增函數(shù);10分
所以,fmin(x)=f(x0)=-ax0≤,x0∈(e,e2),
所以,a≥->->-=,與0
20、等式.
特別地:當作差或變形構造的新函數(shù)不能利用導數(shù)求解時,一般轉化為分別求左、右兩端兩個函數(shù)的最值問題.
2.構造輔助函數(shù)的四種方法
(1)移項法:證明不等式f(x)>g(x)(f(x)0(f(x)-g(x)<0),進而構造輔助函數(shù)h(x)=f(x)-g(x).
(2)構造“形似”函數(shù):對原不等式同解變形,如移項、通分、取對數(shù);把不等式轉化為左右兩邊是相同結構的式子的結構,根據“相同結構”構造輔助函數(shù).
(3)主元法:對于(或可化為)f(x1,x2)≥A的不等式,可選x1(或x2)為主元,構造函數(shù)f(x,x2)(或f(x1,x)).
21、
(4)放縮法:若所構造函數(shù)最值不易求解,可將所證明不等式進行放縮,再重新構造函數(shù).
變式訓練3] (20xx·太原一模)設函數(shù)f(x)=ax2ln x+b(x-1)(x>0),曲線y=f(x)過點(e,e2-e+1),且在點(1,0)處的切線方程為y=0.
(1)求a,b的值;
(2)證明:當x≥1時,f(x)≥(x-1)2;
(3)若當x≥1時,f(x)≥m(x-1)2恒成立,求實數(shù)m的取值范圍.
解] (1)函數(shù)f(x)=ax2ln x+b(x-1)(x>0),可得f′(x)=2aln x+ax+b,
因為f′(1)=a+b=0,f(e)=ae2+b(e-1)=a(e2-e+
22、1)=e2-e+1,
所以a=1,b=-1.2分
(2)證明:f(x)=x2ln x-x+1,
設g(x)=x2ln x+x-x2(x≥1),
g′(x)=2xln x-x+1,(g′(x))′=2ln x+1>0,
所以g′(x)在0,+∞)上單調遞增,
所以g′(x)≥g′(1)=0,
所以g(x)在0,+∞)上單調遞增,
所以g(x)≥g(1)=0,所以f(x)≥(x-1)2.6分
(3)設h(x)=x2ln x-x-m(x-1)2+1,
h′(x)=2xln x+x-2m(x-1)-1,
由(2)中知x2ln x≥(x-1)2+x-1=x(x-1),
所以xln x≥x-1,所以h′(x)≥3(x-1)-2m(x-1),
①當3-2m≥0即m≤時,h′(x)≥0,
所以h(x)在1,+∞)單調遞增,
所以h(x)≥h(1)=0,成立.
②當3-m<0即m>時,
h′(x)=2xln x-(1-2m)(x-1),
(h′(x))′=2ln x+3-2m,
令(h′(x))′=0,得x0=e-2>1,
當x∈1,x0)時,h′(x)<h′(1)=0,
所以h(x)在1,x0)上單調遞減,所以h(x)<h(1)=0,不成立.
綜上,m≤.12分