高三數(shù)學 導(dǎo)數(shù)的應(yīng)用復(fù)習課件 浙教版

上傳人:沈*** 文檔編號:77449274 上傳時間:2022-04-20 格式:PPT 頁數(shù):31 大?。?86KB
收藏 版權(quán)申訴 舉報 下載
高三數(shù)學 導(dǎo)數(shù)的應(yīng)用復(fù)習課件 浙教版_第1頁
第1頁 / 共31頁
高三數(shù)學 導(dǎo)數(shù)的應(yīng)用復(fù)習課件 浙教版_第2頁
第2頁 / 共31頁
高三數(shù)學 導(dǎo)數(shù)的應(yīng)用復(fù)習課件 浙教版_第3頁
第3頁 / 共31頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高三數(shù)學 導(dǎo)數(shù)的應(yīng)用復(fù)習課件 浙教版》由會員分享,可在線閱讀,更多相關(guān)《高三數(shù)學 導(dǎo)數(shù)的應(yīng)用復(fù)習課件 浙教版(31頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、1.導(dǎo)數(shù)的概念導(dǎo)數(shù)的概念 (1) (2) .)()()(0000limxxfxxfxfx.)()()(lim0 xxfxxfxfx2.導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的幾何意義 (1)函數(shù)y=f(x)在x=x0處的導(dǎo)數(shù)f(x0)就是曲線y=f(x)在點(x0,f(x0))處的切線的斜率.即k=f(x0). (2)曲線y=f(x)在點(x0,f(x0)處的切線方程為y-f(x0)=f(x0)(x-x0).3.3.基本初等函數(shù)的導(dǎo)數(shù)公式和運算法則基本初等函數(shù)的導(dǎo)數(shù)公式和運算法則 (1 1)基本初等函數(shù)的導(dǎo)數(shù)公式)基本初等函數(shù)的導(dǎo)數(shù)公式原函數(shù)原函數(shù)導(dǎo)函數(shù)導(dǎo)函數(shù)f f( (x x)=)=c cf f( (x x)=

2、)=x x f f( (x x)=sin )=sin x x f f( (x x)=cos)=cos x xf f( (x x)=)=a ax x( (a a00且且a a1) 1) f f( (x x)=e)=ex x f f( (x x)=log)=loga ax x(a a00且且a a11) f f( (x x)=ln)=lnx x )(*Q3.3.基本初等函數(shù)的導(dǎo)數(shù)公式和運算法則基本初等函數(shù)的導(dǎo)數(shù)公式和運算法則 (1 1)基本初等函數(shù)的導(dǎo)數(shù)公式)基本初等函數(shù)的導(dǎo)數(shù)公式原函數(shù)原函數(shù)導(dǎo)函數(shù)導(dǎo)函數(shù)f f( (x x)=)=c cf f(x x)=0 )=0 f f( (x x)=)=x x

3、f f(x x)= )= x x -1-1 f f( (x x)=sin )=sin x x f f(x x)=cos)=cos x x f f( (x x)=cos)=cos x xf f(x x)=-sin )=-sin x x f f( (x x)=)=a ax x( (a a00且且a a1) 1) f f(x x)=)=a ax xlnln a a f f( (x x)=e)=ex x f f(x x)=e)=ex x f f( (x x)=log)=loga ax x(a a00且且a a11) f f( (x x)=ln)=lnx x )(*Qaxxfln1)(xxf1)( (2

4、 2)導(dǎo)數(shù)的四則運算法則)導(dǎo)數(shù)的四則運算法則 u u( (x x) )v v( (x x) )= u u( (x x) )v v( (x x)=)= )0)()()(xvxvxu(2)導(dǎo)數(shù)的四則運算法則)導(dǎo)數(shù)的四則運算法則 u(x)v(x)=u(x)v(x). u(x)v(x)=u(x)v(x)+u(x)v(x). ).0)()()()()()()()(2xvxvxvxuxvxuxvxu4.函數(shù)的性質(zhì)與導(dǎo)數(shù)函數(shù)的性質(zhì)與導(dǎo)數(shù) (1)單調(diào)性:)單調(diào)性:利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟: : 用導(dǎo)數(shù)法求解函數(shù)極值的用導(dǎo)數(shù)法求解函數(shù)極值的步驟步驟:4.函數(shù)的性質(zhì)與導(dǎo)數(shù)函數(shù)的性質(zhì)

5、與導(dǎo)數(shù) (2)極值:)極值:(3)(3)如果在如果在x x0 0附近的左側(cè)附近的左側(cè) 那么那么,x,x0 0是極大值點是極大值點,f(x,f(x0 0) )是極大值是極大值, ,( ) 0,( ) 0,f xf x右右側(cè)側(cè) 如果在如果在x x0 0附近的左側(cè)附近的左側(cè) 那么那么, , x0是極大值點是極大值點,f(xf(x0 0) )是極小值是極小值. .( ) 0, ( ) 0,f xf x右右側(cè)側(cè)(1) 求導(dǎo)函數(shù)求導(dǎo)函數(shù)f (x); (2) 求解方程求解方程f (x)=0;導(dǎo)數(shù)值為導(dǎo)數(shù)值為0的點是成為極值點的的點是成為極值點的必要不充分條件必要不充分條件求函數(shù)求函數(shù)f(x)在區(qū)間在區(qū)間a,

6、b上的最大值與最小上的最大值與最小值的步驟:值的步驟: 求求f(x); 求求f(x)=0的根(注意取舍)的根(注意取舍); 求出各極值及區(qū)間端點處的函數(shù)值求出各極值及區(qū)間端點處的函數(shù)值; 比較其大小,得結(jié)論(最大的就是最大值,比較其大小,得結(jié)論(最大的就是最大值,最最 小的就是最小值)小的就是最小值).4.函數(shù)的性質(zhì)與導(dǎo)數(shù)函數(shù)的性質(zhì)與導(dǎo)數(shù)(3)最值:)最值:.211023123)斜率最小的切線方程(的取值范圍;)切線傾斜角(作曲線的切線,求:的任意一點,過點上是曲線:已知點例PxxxyP),43)2, 01tan11132631:22kxxxy即)()(解11) 1(10101, 11)2(x

7、yxyx即:切線方程為:),切點為(時,斜率最小為當.211023123)斜率最小的切線方程(的取值范圍;)切線傾斜角(作曲線的切線,求:的任意一點,過點上是曲線:已知點例PxxxyP方法總結(jié):求曲線切線方程(1)在已知切點坐標P(x0,f(x0)時,切線方程為y-y0=f(x0)(x-x0).(2)當不知道切點坐標時,應(yīng)首先設(shè)切點坐標,再求解.的值。、,求取得極值時函數(shù)當,:已知函數(shù)例baxfxbaxxaxxf127)(131)(2223舍去的極值點,不是時時當時、當或即解:1)(10)(1, 0)(1) 1(12)(,11211, 0210) 1(2)(22222axfxxfxxfxxxx

8、xfaaaaafaxaxxf127) 1()(10)()21, 1(, 0)(),21() 1,(1210) 1)(12(212121)(,2122fxfxxfxxfxxxxxxxxfa有極大值時時,時和且或者時、當導(dǎo)數(shù)值為導(dǎo)數(shù)值為0的點是成為極值點的的點是成為極值點的必要不充分條件必要不充分條件的值。、,求取得極值時函數(shù)當,:已知函數(shù)例baxfxbaxxaxxf127)(131)(22231214131)(1,127214131-23xxxxfbb此時.127)(11214131)(23取得極值時函數(shù)當,已知函數(shù)xfxxxxxf的單調(diào)區(qū)間。:求函數(shù)變式在上題的條件下,)(1xf),減區(qū)間()

9、,),(,增區(qū)間(得解:由211-;211-)(0) 1)(12(212121)(2xfxxxxxf.127)(11214131)(23取得極值時函數(shù)當,已知函數(shù)xfxxxxxf的單調(diào)區(qū)間。:求函數(shù)變式在上題的條件下,)(1xf上的最值。在區(qū)間:求函數(shù)變式 1 , 2)(2xf35)2(127) 1(1211) 1 (35)2(127) 1(4855)21(1210) 1)(12(21)(ffffffxxxxxf最小值比較得:最大值,由或解:由.127)(11214131)(23取得極值時函數(shù)當,已知函數(shù)xfxxxxxf的單調(diào)區(qū)間。:求函數(shù)變式在上題的條件下,)(1xf上的最值。在區(qū)間:求函數(shù)

10、變式 1 , 2)(2xf的取值范圍。求實數(shù)有三個實數(shù)根,:若方程變式mmxf)(3)127,4855()()(3mmyxfymxf由圖象得圖象有三個不同的交點的的圖象和只需有三個實數(shù)根:方程變式方法總結(jié):利用導(dǎo)數(shù)解決函數(shù)單調(diào)性、極值和最值問題,還可以通過作草圖,數(shù)形結(jié)合解決有關(guān)方程根的問題。的取值范圍。求實數(shù)恒成立時當:已知例mmxfxxxxxf,)(,2 , 1, 5221)(323.65221)(1223mxxxxf:將函數(shù)變?yōu)椋鹤兪降娜≈捣秶?。求實?shù)恒成立時當:已知例mmxfxxxxxf,)(,2 , 1, 5221)(323.65221)(1223mxxxxf:將函數(shù)變?yōu)椋鹤兪降娜≈?/p>

11、范圍。求實數(shù)恒成立時當:已知例mmxfxxxxxf,)(,2 , 1, 5221)(323的取值范圍。是增函數(shù),求實數(shù)上在區(qū)間:已知函數(shù)變式mmxxxxf2 , 15221)(2232410)61()(2 , 1612 , 1,23)(02 , 1232 , 1023)(12222mgxgxxmxxxgmxxxmxxxf最小值二次函數(shù)對稱軸令成立上的最小值在只需恒成立對任意由題意得:方法變式的取值范圍。是增函數(shù),求實數(shù)上在區(qū)間:已知函數(shù)變式mmxxxxf2 , 15221)(223的取值范圍。是增函數(shù),求實數(shù)上在區(qū)間:已知函數(shù)變式mmxxxxf2 , 15221)(223241,241)61(

12、)(2 , 16123)(2 , 1232 , 1232 , 1023)(22222mgxgxxxxgxxmxxxmxmxxxf最小值二次函數(shù)對稱軸令上的最小值在只需恒成立對任意即恒成立對任意由題意得方法.65221)(1223mxxxxf:將函數(shù)變?yōu)椋鹤兪降娜≈捣秶G髮崝?shù)恒成立時當:已知例mmxfxxxxxf,)(,2 , 1, 5221)(323的取值范圍。是增函數(shù),求實數(shù)上在區(qū)間:已知函數(shù)變式mmxxxxf2 , 15221)(223的取值范圍。上是增函數(shù),求實數(shù)在區(qū)間:已知函數(shù)變式mxmxxxf2 , 1 5221)(323的取值范圍。上是增函數(shù),求實數(shù)在區(qū)間:已知函數(shù)變式mxmxx

13、xf2 , 1 5221)(32310102-120)2()(2630212-1260)6()(26121160) 1 ()(1616,2 , 1 , 23)(02 , 1 232 , 1 023)(132222mmmgxgmmmmgxgmmmmgxgmmxxmxxxgmxxxmxxxf綜上得且最小值時,、當且最小值時,、當且最小值時,、當要討論二次函數(shù)對稱軸令成立上的最小值在只需恒成立對任意由題意得:方法變式的取值范圍。上是增函數(shù),求實數(shù)在區(qū)間:已知函數(shù)變式mxmxxxf2 , 1 5221)(3231) 1 () 1 ()(2 , 1 )(2323)(2 , 1 232 , 1 232 ,

14、 1 023)(232222mgmgxgxgxxxxxgxxmxxxmxmxxxf即最小值是增函數(shù),在易得令上的最小值在只需恒成立對任意恒成立對任意由題意得:方法變式1( )ln1af xxaxx()aR12a ( )f x2( )24.g xxbx14a 1(0,2)x 21,2x 12()()f xg xb已知函數(shù).()當時,討論的單調(diào)性;當時,若對任意,存在使,求實數(shù)取值范圍.()設(shè)2011年山東理科卷-22課后思考課后思考課堂小結(jié)課堂小結(jié) 1.導(dǎo)數(shù)的概念導(dǎo)數(shù)的概念 2.導(dǎo)數(shù)的幾何意義導(dǎo)數(shù)的幾何意義 3.基本初等函數(shù)的導(dǎo)數(shù)公式和運算法則基本初等函數(shù)的導(dǎo)數(shù)公式和運算法則 4.函數(shù)的性質(zhì)與導(dǎo)數(shù)函數(shù)的性質(zhì)與導(dǎo)數(shù) 單調(diào)性、極值和最值單調(diào)性、極值和最值5.綜合運用綜合運用),的取值范圍是(所求實數(shù)即恒成立,需要使上的最大值為在又)(取得極小值,時,當取得極大值,當為增函數(shù);時,為減函數(shù);時,為增函數(shù);時,或者,得即令解:77,)()(7)2(2 , 1)(7)2(,211) 1(271)(1;27225)32- ()(,32-)(, 0)()21 ()(, 0)() 1-32- ()(, 0)()32- , 1(32-1023, 0)(23)(5221)(max2223mmmxfmxffxffffxfxfxfxxfxfxxfxfxxfxfxxxxxxfxxxfxxxxf

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!