《甘肅省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 考點(diǎn)強(qiáng)化練19 矩形、菱形、正方形練習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《甘肅省2019年中考數(shù)學(xué)總復(fù)習(xí) 第五單元 四邊形 考點(diǎn)強(qiáng)化練19 矩形、菱形、正方形練習(xí)(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
考點(diǎn)強(qiáng)化練19 矩形、菱形、正方形
基礎(chǔ)達(dá)標(biāo)
一、選擇題
1.(2018江蘇淮安)如圖,菱形ABCD的對(duì)角線AC,BD的長(zhǎng)分別為6和8,則這個(gè)菱形的周長(zhǎng)是( )
A.20 B.24 C.40 D.48
答案A
解析由菱形對(duì)角線性質(zhì)知,AO=AC=3,BO=BD=4,且AO⊥BO,
則AB==5,
故這個(gè)菱形的周長(zhǎng)L=4AB=20.
故選A.
2.(2017四川廣安)下列說法:①四邊相等的四邊形一定是菱形
②順次連接矩形各邊中點(diǎn)形成的四邊形一定是正方形
③對(duì)角線相等的四邊形一定是矩形
④經(jīng)過平行四邊形對(duì)角線交點(diǎn)的直線,
2、一定能把平行四邊形分成面積相等的兩部分
其中正確的有( )個(gè).
A.4 B.3
C.2 D.1
答案C
3.(2017四川眉山)如圖,EF過?ABCD對(duì)角線的交點(diǎn)O,交AD于點(diǎn)E,交BC于點(diǎn)F,若?ABCD的周長(zhǎng)為18,OE=1.5,則四邊形EFCD的周長(zhǎng)為( )
A.14 B.13
C.12 D.10
答案C
4.(2018貴州遵義)如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過點(diǎn)P作EF∥BC,分別交AB,CD于E、F,連接PB,PD.若AE=2,PF=8.則圖中陰影部分的面積為( )
A.10 B.12 C.16 D.18
答案C
解析作PM⊥A
3、D于點(diǎn)M,交BC于點(diǎn)N.
則四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,
∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,
∴S△DFP=S△PBE=×2×8=8,
∴S陰影=8+8=16,
故選C.
5.(2017山東棗莊)如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(-3,4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過頂點(diǎn)B,則k的值為( )
A.-12 B.-27
C.-32 D.-36
答案C
6.(2018江蘇無(wú)錫)如圖,已知點(diǎn)E是矩形
4、ABCD的對(duì)角線AC上的一動(dòng)點(diǎn),正方形EFGH的頂點(diǎn)G,H都在邊AD上,若AB=3,BC=4,則tan ∠AFE的值( )
A.等于
B.等于
C.等于
D.隨點(diǎn)E位置的變化而變化
答案A
解析∵EF∥AD,
∴∠AFE=∠FAG,△AEH∽△ACD,
∴.
設(shè)EH=3x,AH=4x,
∴HG=GF=3x,
∴tan ∠AFE=tan ∠FAG
=.
故選A.
二、填空題
7.(2018湖南株洲)如圖,矩形ABCD的對(duì)角線AC與BD相交點(diǎn)O,AC=10,P,Q分別為AO,AD的中點(diǎn),則PQ的長(zhǎng)度為 .?
答案2.5
解析∵四邊形ABCD是矩形
5、,
∴AC=BD=10,BO=DO=BD,
∴OD=BD=5,
∵點(diǎn)P,Q分別是AO,AD的中點(diǎn),
∴PQ是△AOD的中位線,
∴PQ=DO=2.5.
8.(2018廣東廣州)如圖,若菱形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(3,0),(-2,0),點(diǎn)D在y軸上,則點(diǎn)C的坐標(biāo)是 .?
答案(-5,4)
解析∵菱形ABCD的頂點(diǎn)A,B的坐標(biāo)分別為(3,0),(-2,0),點(diǎn)D在y軸上,
∴AB=5,
∴AD=5,
∴由勾股定理知:
OD==4,
∴點(diǎn)C的坐標(biāo)是(-5,4).
9.(2018湖北武漢)以正方形ABCD的邊AD為邊作等邊三角形ADE,則∠BEC的度數(shù)是
6、 .?
答案30°或150°
解析如圖1,
圖1
∵四邊形ABCD為正方形,△ADE為等邊三角形,
∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,
∴∠BAE=∠CDE=150°,
又AB=AE,DC=DE,
∴∠AEB=∠CED=15°,
則∠BEC=∠AED-∠AEB-∠CED=30°.
如圖2,
圖2
∵△ADE是等邊三角形,
∴AD=DE,
∵四邊形ABCD是正方形,
∴AD=DC,
∴DE=DC,
∴∠CED=∠ECD,
∴∠CDE=∠ADC-∠ADE
7、=90°-60°=30°,
∴∠CED=∠ECD=(180°-30°)=75°,同理∠BEA=∠ABE=75°,
∴∠BEC=360°-75°×2-60°=150°.
三、解答題
10.如圖,在菱形ABCD中,對(duì)角線AC與BD交于點(diǎn)O.過點(diǎn)C作BD的平行線,過點(diǎn)D作AC的平行線,兩直線相交于點(diǎn)E.
(1)求證:四邊形OCED是矩形;
(2)若CE=1,DE=2,則ABCD的面積是多少?
(1)證明∵四邊形ABCD是菱形,
∴AC⊥BD,
∴∠COD=90°.
∵CE∥OD,DE∥OC,
∴四邊形OCED是平行四邊形,
又∠COD=90°,
∴平行四邊形OCED是矩
8、形.
(2)解由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.
∵四邊形ABCD是菱形,
∴AC=2OC=4,BD=2OD=2,
∴菱形ABCD的面積為
AC·BD=×4×2=4.?導(dǎo)學(xué)號(hào)13814058?
能力提升
一、選擇題
1.下列說法中,正確的個(gè)數(shù)為( )
①對(duì)頂角相等;
②兩直線平行,同旁內(nèi)角相等;
③對(duì)角線互相垂直的四邊形為菱形;
④對(duì)角線互相垂直平分且相等的四邊形為正方形.
A.1 B.2 C.3 D.4
答案B
解析①對(duì)頂角相等,故①正確;
②兩直線平行,同旁內(nèi)角互補(bǔ),故②錯(cuò)誤;
③對(duì)角線互相垂直且平分的四邊形為菱形,
9、故③錯(cuò)誤;
④對(duì)角線互相垂直平分且相等的四邊形為正方形,故④正確,
故選B.
2.(2018山東棗莊)如圖,在矩形ABCD中,點(diǎn)E是邊BC的中點(diǎn),AE⊥BD,垂足為F,則tan ∠BDE的值是( )
A. B. C. D.
答案A
解析∵四邊形ABCD是矩形,
∴AD=BC,AD∥BC,
∵點(diǎn)E是邊BC的中點(diǎn),
∴BE=BC=AD,
∴△BEF∽△DAF,
∴,
∴EF=AF,
∴EF=AE,
∵點(diǎn)E是邊BC的中點(diǎn),
∴由矩形的對(duì)稱性得:AE=DE,
∴EF=DE,設(shè)EF=x,則DE=3x,
∴DF==2x,
∴tan ∠BDE=.故選A.
3.如圖
10、,在Rt△ABC中,∠C=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒 cm的速度向終點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1 cm的速度向終點(diǎn)C運(yùn)動(dòng),將△PQC沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P'.設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t s,若四邊形QPCP'為菱形,則t的值為( )
A. B.2
C.2 D.3
答案B
解析連接PP',交BC于N點(diǎn),過P作PM⊥AC,垂足為M.若運(yùn)動(dòng)t s時(shí)四邊形QPCP'為菱形,則PQ=PC,PN⊥BC,四邊形PMCN為矩形,BQ=t,AP=t,PM=NC=t,
∴QC=2t,
∴BC=BQ+QC=t+2t=3t=6 cm,
11、∴t=2,故選B.
4.(2018河南)如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1 cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( )
圖1
圖2
A. B.2
C. D.2
答案C
解析過點(diǎn)D作DE⊥BC于點(diǎn)E
由題圖2可知,點(diǎn)F由點(diǎn)A到點(diǎn)D用時(shí)為a s,△FBC的面積為a cm2.
∴AD=a.
∴DE·AD=a.
∴DE=2.
當(dāng)點(diǎn)F從D到B時(shí),用 s,
∴BD=.
Rt△DBE中,
BE==1,
∵ABCD是菱形,
∴EC=a-1,DC=a.
Rt△DEC
12、中,
a2=22+(a-1)2,
解得a=.
故選C.
5.
(2017廣東)如圖,已知正方形ABCD,點(diǎn)E是BC邊的中點(diǎn),DE與AC相交于點(diǎn)F,連接BF,下列結(jié)論:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正確的是( )
A.①③ B.②③
C.①④ D.②④
答案C
二、填空題
6.
(2018山東濰坊)如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)A與原點(diǎn)重合,點(diǎn)B在y軸的正半軸上,點(diǎn)D在x軸的負(fù)半軸上,將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至正方形AB'C'D'的位置,B'C'與CD相交于
13、點(diǎn)M,則點(diǎn)M的坐標(biāo)為 .?
答案
解析如圖,連接AM,
∵將邊長(zhǎng)為1的正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到正方形AB'C'D',
∴AD=AB'=1,∠BAB'=30°,
∴∠B'AD=60°,
在Rt△ADM和Rt△AB'M中,
∵
∴Rt△ADM≌Rt△AB'M(HL),
∴∠DAM=∠B'AM=∠B'AD=30°,
∴DM=ADtan ∠DAM=1×,
∴點(diǎn)M的坐標(biāo)為(-1,).
三、解答題
7.
如圖所示,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過O作直線MN∥BC,設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求
14、證:OE=OF;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
(1)證明∵M(jìn)N∥BC,∴∠OEC=∠BCE.
又∠OCE=∠BCE,∴∠OEC=∠OCE,
∴OE=OC.
同理可證OF=OC,
∴OE=OF.
(2)解當(dāng)點(diǎn)O運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AECF是矩形.
證明:∵CE,CF分別是∠ACB的內(nèi),外角平分線.
∴∠OCE+∠OCF=(∠ACB+∠ACD)=×180°=90°,即∠ECF=90°,
又∵OE=OF,
∴當(dāng)O點(diǎn)運(yùn)動(dòng)到AC中點(diǎn)時(shí),OA=OC,四邊形AECF是矩形.
?導(dǎo)學(xué)號(hào)13814059?
8.
(2018貴州遵義)如圖,
15、正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E,F分別在AB,BC上(AE