濕式離合器設(shè)計(jì)-含DCT濕式雙離合器【含6張cad圖紙+文檔全套資料】
喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢(xún)QQ:414951605或者1304139763 ======================== 喜歡就充值下載吧。。資源目錄里展示的文件全都有,,請(qǐng)放心下載,,有疑問(wèn)咨詢(xún)QQ:414951605或者1304139763 ========================
濕式離合器設(shè)計(jì)
摘 要
以?xún)?nèi)燃機(jī)在作為動(dòng)力的機(jī)械傳動(dòng)汽車(chē)中,離合器是作為一個(gè)獨(dú)立的總成而存在的。通常離合器在發(fā)動(dòng)機(jī)和變速器,它連接到發(fā)動(dòng)機(jī)飛輪的活動(dòng)部分之間安裝時(shí),傳輸是連接至驅(qū)動(dòng)部。對(duì)于所有類(lèi)型的汽車(chē)被廣泛使用濕式離合器,實(shí)際上是一個(gè)獨(dú)立的機(jī)構(gòu),可以依靠它們的主人,摩擦的驅(qū)動(dòng)部之間來(lái)傳遞動(dòng)力。離合器的主要功能是切斷,發(fā)動(dòng)機(jī)和傳動(dòng)系統(tǒng)實(shí)現(xiàn)平滑的參與,以確保順利啟動(dòng)汽車(chē);移位中分離發(fā)動(dòng)機(jī)和傳動(dòng)系統(tǒng),減少了換檔變速器的影響;受到在工作更大的動(dòng)態(tài)負(fù)載時(shí),以限制傳動(dòng)系的最大轉(zhuǎn)矩經(jīng)受份防止傳動(dòng)系統(tǒng)損壞由于過(guò)載;有效地降低傳動(dòng)系的振動(dòng)和噪音。
關(guān)鍵字:濕式離合器 離合器 摩擦片 減振盤(pán)
目錄
第1章 緒論 4
1.1 引言 4
1.2 離合器的發(fā)展 4
1.3 濕式離合器的結(jié)構(gòu)及其優(yōu)點(diǎn) 5
1.4 設(shè)計(jì)內(nèi)容 7
1.5 方案的確定 8
第2章 基本參數(shù)設(shè)計(jì) 9
2.1 離合器基本性能關(guān)系式 9
2.2 后背系數(shù)的選擇 9
2.3摩擦片參數(shù)設(shè)計(jì) 9
2.4本章小結(jié) 13
第3章 主動(dòng)部分設(shè)計(jì) 14
3.1壓盤(pán)設(shè)計(jì) 14
3.1.1壓盤(pán)的設(shè)計(jì) 14
3.2 離合器的設(shè)計(jì) 16
3.3 傳動(dòng)片設(shè)計(jì) 16
3.4 本章小結(jié) 17
第4章 從動(dòng)盤(pán)總成設(shè)計(jì) 18
4.1摩擦片設(shè)計(jì) 18
4.2從動(dòng)盤(pán)轂設(shè)計(jì) 18
4.3從動(dòng)片設(shè)計(jì) 20
4.4減震器設(shè)計(jì) 20
4.4.1彈片減震器的功能 20
4.4.2彈片減震器的結(jié)構(gòu)類(lèi)型的選擇 22
4.3本章小結(jié) 28
結(jié)論 37
致謝 38
參考文獻(xiàn) 39
第1章 緒 論
1.1引言
以?xún)?nèi)燃機(jī)在作為動(dòng)力的機(jī)械傳動(dòng)汽車(chē)中,離合器是作為一個(gè)獨(dú)立的總成而存在的。通常離合器在發(fā)動(dòng)機(jī)和變速器,它連接到發(fā)動(dòng)機(jī)飛輪的活動(dòng)部分之間安裝時(shí),傳輸是連接至驅(qū)動(dòng)部。對(duì)于所有類(lèi)型的汽車(chē)被廣泛使用濕式離合器,實(shí)際上是一個(gè)獨(dú)立的機(jī)構(gòu),可以依靠它們的主人,摩擦的驅(qū)動(dòng)部之間來(lái)傳遞動(dòng)力。離合器的主要功能是切斷,發(fā)動(dòng)機(jī)和傳動(dòng)系統(tǒng)實(shí)現(xiàn)平滑的參與,以確保順利啟動(dòng)汽車(chē);移位中分離發(fā)動(dòng)機(jī)和傳動(dòng)系統(tǒng),減少了換檔變速器的影響;受到在工作更大的動(dòng)態(tài)負(fù)載時(shí),以限制傳動(dòng)系的最大轉(zhuǎn)矩經(jīng)受份防止傳動(dòng)系統(tǒng)損壞由于過(guò)載;有效地降低傳動(dòng)系的振動(dòng)和噪音。
1.2離合器的發(fā)展
在離合器結(jié)構(gòu),最成功的錐形離合器的早期發(fā)展。其原型已被安裝在1889年德國(guó)戴姆勒公司生產(chǎn)的汽車(chē)鋼制車(chē)輪。它是發(fā)動(dòng)機(jī)飛輪的內(nèi)孔錐形制成的離合器的積極成員。采用錐形離合器項(xiàng)目已延伸到1920年代中期,當(dāng)錐形離合器制造相當(dāng)簡(jiǎn)單,很容易修復(fù)摩擦表面。它的摩擦材料已經(jīng)羅用發(fā)帶,皮帶。當(dāng)時(shí)曾有過(guò)鞋 - 鼓離合器,其結(jié)構(gòu)有利于在離心力的作用,使對(duì)鼓面蹄。無(wú)論錐形離合器或鞋 - 離合器鼓,也容易造成分離不徹底,甚至自鎖現(xiàn)象主要跟隨根本無(wú)法分開(kāi)。
由于今天采用的是多片離合器片離合器片的先驅(qū),它是1925年出現(xiàn)并沒(méi)有之后。多片離合器的主要優(yōu)勢(shì),在汽車(chē)起步離合器的接合比較順利,無(wú)沖擊。早在設(shè)計(jì),多片按成對(duì)出現(xiàn),一個(gè)鋼盤(pán)在青銅盤(pán)前的布局設(shè)計(jì)。采用摩擦純金屬,它們浸在油中,以達(dá)到更滿(mǎn)意的性能。
浸在油盤(pán)離合器盤(pán)直徑不宜過(guò)大,以避免在高速擺脫了油。另外,油也容易粘到金屬盤(pán),容易地分離。但畢竟利大于弊。因?yàn)樵谀莻€(gè)時(shí)候,許多其他離合器仍然是原來(lái)的舞臺(tái),表現(xiàn)非常不穩(wěn)定。
石棉基摩擦材料被引入和改進(jìn),使得盤(pán)形離合器能夠傳輸更高的轉(zhuǎn)矩,并能承受更高的溫度。此外,使用石棉基摩擦材料可以是摩擦面積,從而可以減少摩擦片數(shù),這是關(guān)鍵的多片離合器至離合器換檔的單片之后小。 20世紀(jì)30年代的很好,直到20年代末,該只用于多片式離合器的唯一種族和威力強(qiáng)大的汽車(chē)的工程車(chē)輛,。
早期的單片濕式離合器和錐形離合器由一個(gè)類(lèi)似的問(wèn)題,即,當(dāng)離合器嚙合順利足夠。然而,由于濕式離合器緊湊的整體結(jié)構(gòu),散熱性好,轉(zhuǎn)動(dòng)慣量小,所以?xún)?nèi)燃機(jī)為動(dòng)力的汽車(chē)經(jīng)常用它,的廉價(jià)沖壓離合器蓋更是讓后特別是研制成功。
其實(shí)早在1920年,已經(jīng)出現(xiàn)了整體的濕式離合器,本發(fā)明和上述摩擦面片石棉有關(guān)的團(tuán)體。但在這段時(shí)間內(nèi)一段相當(dāng)長(zhǎng)的時(shí)間后,由于在技術(shù)設(shè)計(jì)的缺陷,造成的離合器單片足夠平滑的問(wèn)題的接合。早在第一次世界大戰(zhàn)之后,存在金屬薄板片單片從動(dòng)盤(pán)離合器的表面上無(wú)摩擦,摩擦面片被連接到飛輪和壓盤(pán)的活性部位,該彈簧設(shè)置在中心,在通過(guò)后的壓板上的杠桿作用。然后切換到布置沿著上壓板直接壓力的圓周上的多個(gè)直徑較小的彈簧,成為現(xiàn)在的螺旋彈簧裝置的最常用方法。這種布置帶來(lái)了實(shí)惠的設(shè)計(jì),以使壓力板彈簧工作的一個(gè)更均勻的壓力分布,并減小軸向尺寸。
多年的實(shí)踐經(jīng)驗(yàn)和技術(shù),人們逐漸它體積小,改進(jìn),因?yàn)樗哂薪Y(jié)構(gòu)的驅(qū)動(dòng)部分的良好的熱慣性小,所以選擇一個(gè)濕式離合器濕式,緊湊的趨勢(shì)在,如完全分離,很容易調(diào)整方便,由于某些結(jié)構(gòu)性措施的結(jié)果,我們,目前廣泛模型中,使用在大,中,小型,實(shí)現(xiàn)了磁盤(pán)的平滑接合我們能。
今天整體的濕式離合器的結(jié)構(gòu)設(shè)計(jì)是相當(dāng)完美的。使用帶有軸向柔性從動(dòng)板,提高了離合器接合的平滑度。從動(dòng)離合器組件被安裝在扭轉(zhuǎn)阻尼器,以防止扭轉(zhuǎn)共振的傳輸,從而減少噪聲和負(fù)載的傳輸。
隨著人們轎車(chē)的舒適性要求的提高,離合器已在原有基礎(chǔ)上不斷完善,越來(lái)越多的使用乘客扭轉(zhuǎn)減振器的雙質(zhì)量飛輪,更好的降噪傳動(dòng)系統(tǒng)。
對(duì)于重型離合器,這是常有的大規(guī)模商用,發(fā)動(dòng)機(jī)功率增加,但離合器的規(guī)模有限,以允許更多的空間條件,日本離合器酷天,增加了離合器的扭矩傳遞能力,提高使用壽命,簡(jiǎn)化操作,它已成為一個(gè)重型離合器當(dāng)前的趨勢(shì)。為了提高離合器的變速器扭矩容量在重型車(chē)輛可以是雙板濕式離合器。從理論上講,在相同的徑向尺寸,雙盤(pán)離合器變速器扭矩容量和使用壽命是單片雙折。但受其他客觀因素,價(jià)值比理論數(shù)量少的實(shí)際效果。
近年來(lái),濕式離合器技術(shù)的不斷提高,在一些國(guó)外重型車(chē)開(kāi)始使用多片濕式離合器。與濕式離合器相比,由于油泵的強(qiáng)制冷卻,低摩擦表面溫度的結(jié)果(不超過(guò)93℃),因此,開(kāi)始時(shí)間不被滑動(dòng)摩擦片燃燒造成的。查閱國(guó)內(nèi)外資料了解到,離合器壽命可達(dá)5-6倍的濕式離合器,但優(yōu)點(diǎn)是在濕式離合器戲必須在一定的溫度范圍達(dá)到了溫度范圍的負(fù)面影響。目前,這一技術(shù)還不夠完善。
1.3濕式離合器的結(jié)構(gòu)及其優(yōu)點(diǎn)
1.3.1濕式離合器的結(jié)構(gòu)
盤(pán)簧離合器由螺旋彈簧,離合器罩,由壓力板總成,驅(qū)動(dòng)板和釋放軸承組件和其他零件。
1,離合器蓋
離合器蓋一般是120°旋轉(zhuǎn),或用螺栓和飛輪連在了一起90°對(duì)稱(chēng)沖壓板殼結(jié)構(gòu)。離合器蓋離合器結(jié)構(gòu)更形承載構(gòu)件復(fù)雜,壓縮彈簧的壓力最終會(huì)作出忍受。
如圖2所示,螺旋彈簧
螺旋彈簧按壓離合器重要元素,在開(kāi)放孔的內(nèi)周表面有許多長(zhǎng)均勻的徑向狹槽,形成在大橢圓形或矩形孔的凹槽的根,可穿過(guò)支撐鉚釘,這部分是所謂的分離裝置;從底部的孔形狀像一個(gè)彈簧的一個(gè)無(wú)底的寬側(cè)板的外周,所述橫截面的截頭圓錐體,稱(chēng)作碟形彈簧部。
3,壓板
臺(tái)板結(jié)構(gòu)一般是環(huán)形的圓盤(pán)形鑄件,壓盤(pán)和離合器由發(fā)動(dòng)機(jī)有著密切的聯(lián)系。壓力板被中斷的環(huán)形支承凸臺(tái),最外面的均勻的力傳輸與三個(gè)或四個(gè)凸耳的所述外周附近。
4,驅(qū)動(dòng)皮帶
當(dāng)離合器被接合以驅(qū)動(dòng)所述飛輪驅(qū)動(dòng)離合器蓋壓盤(pán)一起旋轉(zhuǎn),并通過(guò)摩擦從動(dòng)盤(pán)旋轉(zhuǎn)之間的壓力板和從動(dòng)板摩擦板;在離合器片,壓盤(pán)相對(duì)于自由軸向移動(dòng),從動(dòng)盤(pán)釋放離合器蓋。這些動(dòng)作由驅(qū)動(dòng)器葉片完成。變速器和離合器蓋片,分別與壓力板鉚釘或螺栓連接的兩端,一般沿圓周布置。當(dāng)離合器接合時(shí),通過(guò)該離合器蓋以驅(qū)動(dòng)壓板共同旋轉(zhuǎn);在離合器,你可以用它來(lái)影響壓盤(pán)軸向分離的彈性恢復(fù)力,并減少操作力。
5,分離軸承總成
釋放的分離軸承,分離套筒等部件軸承組件。在工作??中主要承受軸向力的分離軸承,還要承受下徑向力的離心力高速旋轉(zhuǎn)。目前國(guó)內(nèi)的汽車(chē)使用更推力角接觸球軸承,全封閉結(jié)構(gòu)和高溫潤(rùn)滑脂鏗,其最終的形狀和手指分離配合平面球形面的舌部的舌形,弧形舌部扁平或凹曲端面的端面表面。
1.3.2濕式離合器的工作原理
由圖1.1可知,離合器蓋1與發(fā)動(dòng)機(jī)飛輪用螺栓緊固在一起,當(dāng)螺旋彈簧3被預(yù)加壓緊,離合器處于接合位置時(shí),由于螺旋彈簧大端對(duì)壓盤(pán)5的壓緊力,使得壓盤(pán)與從動(dòng)盤(pán)6摩擦片之間產(chǎn)生摩擦力。該離合器蓋組件(離合器形式部分活性物)并旋轉(zhuǎn)與飛輪由驅(qū)動(dòng)盤(pán)組件的摩擦板的摩擦轉(zhuǎn)矩驅(qū)動(dòng),以發(fā)送該發(fā)送和發(fā)動(dòng)機(jī)功率它會(huì)一起轉(zhuǎn)動(dòng)
圖1.1濕式離合器的工作原理圖
分離離合器,離合器踏板8步,通過(guò)機(jī)構(gòu)的操縱,使分離軸承裝配7個(gè)獨(dú)立的螺旋彈簧裝置推進(jìn),螺旋彈簧反錐形變形,大假結(jié)束壓盤(pán),壓盤(pán)在驅(qū)動(dòng)器中的彈性件背離下摩擦片,從動(dòng)圓盤(pán)組件處于脫離位置時(shí),切斷發(fā)動(dòng)機(jī)動(dòng)力的傳遞。
1.3.3濕式離合器的優(yōu)點(diǎn)
與其他形式的濕式離合器的離合器相比,它具有許多優(yōu)點(diǎn):
1,濕式離合器有一個(gè)理想的非線性彈性特性;
2,螺旋彈簧和獨(dú)立于壓縮彈簧和杠桿,簡(jiǎn)單且緊湊的結(jié)構(gòu),軸向尺寸小,零件數(shù)量少,低質(zhì)量;
3,當(dāng)高速旋轉(zhuǎn)時(shí),彈簧按壓力小的降低,性能更加穩(wěn)定;
4,螺旋彈簧與壓板接觸壓力分布的全周,摩擦接觸良好,磨損均勻;
5,容易實(shí)現(xiàn)良好的透氣性,使用壽命長(zhǎng);
如圖6所示,螺旋彈簧和離合器中心一致的中心線,良好的平衡。
1.4設(shè)計(jì)內(nèi)容
1、壓盤(pán)設(shè)計(jì)。
2、離合器蓋設(shè)計(jì)。
3、從動(dòng)盤(pán)總成設(shè)計(jì)。
4、螺旋彈簧設(shè)計(jì)。
1.5方案選擇
本設(shè)計(jì)采用了單件濕式離合器。使用,因?yàn)樗慕Y(jié)構(gòu)簡(jiǎn)單,可靠性高,維修方便車(chē)輛摩擦離合器,大多數(shù)轎車(chē)均采用這種形式的離合器。該濕式離合器是因?yàn)榇蠖鄶?shù)為需要的多片濕式離合器離合器來(lái)傳遞扭矩較大離合器,賽車(chē)不在此列。濕式離合器是因?yàn)闈袷诫x合器具有許多優(yōu)點(diǎn):第一,螺旋彈簧具有非線性特性,因而可被設(shè)計(jì)使得當(dāng)摩擦墊磨損時(shí),彈簧壓力幾乎不變,并降低離合器踏板的力時(shí)分離,使操縱輕便;其次,在螺旋彈簧離合器軸的中心線的安裝位置是正確的,所以壓力幾乎不受沖擊,穩(wěn)定性的離心力,平衡權(quán)利;此外,螺旋彈簧本身,發(fā)揮壓縮彈簧和杠桿的分離,離合器結(jié)構(gòu)大為簡(jiǎn)化,減少了部件的數(shù)量,降低了質(zhì)量和顯著縮短其軸向尺寸;另外,由于螺旋彈簧和壓板是接觸壓力分布的全周,與摩擦片是良好,磨損均勻,而且容易實(shí)現(xiàn)良好的冷卻通風(fēng)。由于濕式離合器的具有一系列優(yōu)點(diǎn),如上所述,和制造螺旋彈簧的技術(shù)都在不斷提高的水平,因此該離合器在汽車(chē)和小型的小轎車(chē)已被廣泛采用,并逐漸擴(kuò)展到卡車(chē)上。選擇單片從動(dòng)盤(pán)驅(qū)動(dòng)盤(pán)是一種結(jié)構(gòu)簡(jiǎn)單,調(diào)整方便。使用傳輸芯片,因?yàn)樗皇翘黠@的缺點(diǎn),簡(jiǎn)化了結(jié)構(gòu),降低了裝配要求和它幫助設(shè)置壓紙壓板驅(qū)動(dòng)系統(tǒng)。由于其相對(duì)較小的部分的號(hào)碼選擇拉離合器拉式離合器,更簡(jiǎn)化的結(jié)構(gòu),軸向尺寸變小,較小質(zhì)量;并分離較大的杠桿,踏板操作力之變淺。
綜上所述本設(shè)計(jì)選用單片拉濕式離合器。
第2章 基本尺寸參數(shù)選擇
2.1離合器基本性能關(guān)系式
摩擦板或驅(qū)動(dòng)板外徑離合器的一個(gè)重要參數(shù),離合器其整體尺寸有決定性的影響,并根據(jù)所有的離合器的可以傳輸發(fā)動(dòng)機(jī)的最大扭矩來(lái)選擇。為了可靠地提供最大發(fā)動(dòng)機(jī)扭矩,靜摩擦轉(zhuǎn)矩離合器應(yīng)大于所述最大發(fā)動(dòng)機(jī)扭矩和反過(guò)來(lái)的摩擦轉(zhuǎn)矩傳遞離合器決定了它的摩擦面Z的摩擦因數(shù)f,按壓力在總摩擦的作用表面平均PΣ摩擦摩擦片半徑室,即
(2.1)
式中:—離合器的后備系數(shù),見(jiàn)下表。
—摩擦系數(shù),計(jì)算時(shí)一般取0.30。
該車(chē)型發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩為200N·m,取摩擦系數(shù)為0.3可得離合器的靜摩擦力矩為N·m[1]。
2.2后備系數(shù)的選擇
離合器的后備系數(shù),選擇時(shí)應(yīng)考慮摩擦片磨損后仍能傳遞及避免起步時(shí)滑磨時(shí)間過(guò)長(zhǎng);同時(shí)應(yīng)考慮防止傳動(dòng)系過(guò)載及操縱輕便等。
表2.1后備系數(shù)表
車(chē) 型
轎車(chē) 輕型貨車(chē)
中、 重型貨車(chē)
越野車(chē) 牽引車(chē)
后 備 系 數(shù)
1.30~1.75
1.60~2.25
2.0~3.5
本設(shè)計(jì)是基于長(zhǎng)城賽弗F1汽車(chē)的離合器設(shè)計(jì),該車(chē)型屬于越野車(chē)類(lèi)型,故選擇本次設(shè)計(jì)的后背系數(shù)β在2.0~3.5之間選擇。因?yàn)樵撥?chē)型為城市越野車(chē),不需要太大的后備系數(shù),取=2.0。
2.3摩擦片參數(shù)設(shè)計(jì)
摩擦片離合器,這是關(guān)系到該結(jié)構(gòu)的重量和離合器,扭矩的壽命和離合器大小它需要的基本尺寸的外徑之間有一定的關(guān)系。很顯然,大扭矩傳遞,你需要更大的尺寸。發(fā)動(dòng)機(jī)轉(zhuǎn)矩是一個(gè)重要參數(shù),當(dāng)最大發(fā)動(dòng)機(jī)扭矩,根據(jù)到D確定,可以查表,以確定為2.2旦標(biāo)尺摩擦板的外徑。
表2.2離合器尺寸選擇參數(shù)表
摩擦片外徑D/mm
發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩Te max/N·m
單片離合器
雙片離合器
重負(fù)荷
中等負(fù)荷
極限值
225
—
130
150
170
250
—
170
200
230
280
—
240
280
320
300
—
260
310
360
325
—
320
380
450
350
—
410
480
550
380
—
510
600
700
410
—
620
720
830
430
350
680
800
930
450
380
820
950
1100
所選的尺寸D應(yīng)符合有關(guān)標(biāo)準(zhǔn)(JB1457-74)的規(guī)定。表2.2給出了離合器摩擦片的尺寸系列和參數(shù)。另外,所選的D應(yīng)符合其最大圓周速度不超過(guò)65~70m/s的要求,且重型汽車(chē)不應(yīng)超過(guò)50m/s。
表2.3離合器摩擦片尺寸系列和參數(shù)
外徑
內(nèi)徑
厚度
內(nèi)外徑之比
單位面積
160
110
3.2
0.687
10600
180
125
3.5
0.694
13200
200
140
3.5
0.700
16000
225
150
3.5
0.667
22100
250
155
3.5
0.620
30200
280
165
3.5
0.589
40200
300
175
3.5
0.583
46600
325
190
3.5
0.585
54600
350
195
4
0.557
67800
380
205
4
0.540
72900
根據(jù)發(fā)動(dòng)機(jī)參數(shù)該車(chē)型發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩Te max為190N·m及表2.1可查出本車(chē)將使用單片式離合器,且離合器摩擦片外徑為250mm。再查表2.3即可得到摩擦片的具體參數(shù),如下:
摩擦片外徑D=250mm
摩擦片內(nèi)徑d=155mm
摩擦片厚度h=3.5mm
摩擦片內(nèi)外徑比d/D=0.620
單面面積F=30200mm2
2.4本章小結(jié)
本章離合器摩擦片的設(shè)計(jì)選擇,確定外徑離合器片,裝配后的許多其它組件選擇方面起到了決定性的作用。通過(guò)設(shè)計(jì)選擇的部件的摩擦板,也可以間接地確定離合器等的尺寸。
第3章 主動(dòng)部分設(shè)計(jì)
3.1壓盤(pán)設(shè)計(jì)
3.1.1壓盤(pán)參數(shù)的選擇和校核
壓板更復(fù)雜的形狀,需要良好的熱傳導(dǎo)性,它具有摩擦和磨損系數(shù)高。它通常是由灰口鑄鐵HT200,是珠光體組織,硬度HB170?227。另外可以添加少量的金屬元素(如鎳,鐵,錳合金等)以增強(qiáng)其機(jī)械強(qiáng)度。壓力板的外徑可以通過(guò)結(jié)構(gòu)根據(jù)摩擦板的外徑來(lái)確定。為了讓每一個(gè)參與將不會(huì)升得太高,壓力板應(yīng)該足夠大的質(zhì)量來(lái)吸收熱量;為了確保在加熱沒(méi)有翹曲的情況下,壓力板應(yīng)具有足夠的剛度,并且通常更厚(載貨運(yùn)汽車(chē)離合器壓盤(pán),其厚度不小于15mm)。此外,在結(jié)構(gòu)設(shè)計(jì)上也應(yīng)該注意壓板更好的通風(fēng)和冷卻,例如在壓板體投地導(dǎo)風(fēng)管。壓盤(pán)的厚度初步確定后,應(yīng)校核離合器一次接合的溫升不應(yīng)超過(guò)8℃~10℃溫升τ的校核按式為:
τ=γL/mc (3.1)
式中:γ—傳到壓盤(pán)的熱量所占的比率。對(duì)單片離合器,γ=0.5;
m—壓盤(pán)的質(zhì)量,kg;
c—壓盤(pán)的比熱容,鑄鐵的比熱容為℃);
L—滑磨功,J。
若溫升過(guò)高,可適當(dāng)增加壓盤(pán)的厚度。壓盤(pán)單件的平衡精度應(yīng)不低于15~20g·cm。
選擇壓盤(pán)厚度為20mm,外徑255mm,內(nèi)徑150mm。
代入公式(3.1)進(jìn)行校核計(jì)算,τ=6.732℃符合標(biāo)準(zhǔn)[2,3]。
3.2離合器蓋設(shè)計(jì)
一般使用2. 5?5毫米厚的低碳鋼板沖壓制造。離合器蓋的形狀和尺寸由離合器的結(jié)構(gòu)設(shè)計(jì)確定。在特別說(shuō)明的設(shè)計(jì)是通風(fēng)等問(wèn)題的剛度。離合器罩剛性是不夠的,會(huì)產(chǎn)生大的變形,這不僅會(huì)影響操作系統(tǒng)的傳輸效率,而且還可能導(dǎo)致分離不完全,引起過(guò)早磨損襯里,甚至變速器換檔困難。離合器蓋建有壓盤(pán),釋放桿,壓縮彈簧等。因此,飛輪的軸非常重要的。它可以在定位銷(xiāo)或螺栓和軸頸對(duì)的方式使用。為了加強(qiáng)通風(fēng)并除去摩擦襯磨損粉末,以確保的前提下的剛性,就可以蓋設(shè)置循環(huán)進(jìn)氣口和出口的離合器,甚至設(shè)計(jì)了蓋子結(jié)構(gòu)用鼓風(fēng)機(jī)葉片。
設(shè)計(jì)要求離合器罩離合器罩直徑大于離合器片的外徑,能將其他離合器上的部件包括其中即可[4]。
3.3傳動(dòng)片設(shè)計(jì)
當(dāng)壓盤(pán)與飛輪通過(guò)彈性傳動(dòng)片連接時(shí),應(yīng)板材開(kāi)車(chē)?yán)瓚?yīng)力強(qiáng)度校核;如果通過(guò)凹凸孔連接,定位銷(xiāo)或鍵,您應(yīng)該執(zhí)行壓應(yīng)力強(qiáng)度校核:
(3.2)
式中:—考慮發(fā)動(dòng)機(jī)轉(zhuǎn)矩分配到壓盤(pán)上的比例系數(shù),單片離合器取;
—力的作用半徑(見(jiàn)圖3.4),m;
—工作元件(例凸塊一窗孔、傳動(dòng)銷(xiāo)、鍵)的數(shù)目,這里取3組每組4片;
—接觸面積,mm2,這里取長(zhǎng)為65mm,寬為20mm,所以F=1300 mm2 。
計(jì)算得=15.22符合標(biāo)準(zhǔn)[5]。
1-傳力裝置;2-分離杠桿中間支承;3-支承叉;4-調(diào)整螺母
圖3.4壓盤(pán)及分離杠桿計(jì)算用圖
3.4本章小結(jié)
本章離合器驅(qū)動(dòng)部分的設(shè)計(jì),計(jì)算,選擇和檢查。該倡議包括離合器蓋,壓盤(pán)等等。這些組件是離合器扭矩傳動(dòng)部件,它們的共同特點(diǎn)是做一個(gè)良好的散熱效果,有效地傳遞出的積極的部分熱能力的能力。這些組件都是標(biāo)準(zhǔn)件組裝,嚴(yán)格驗(yàn)算,你可以使用標(biāo)準(zhǔn),滿(mǎn)足使用的需要。
第4章 從動(dòng)盤(pán)總成設(shè)計(jì)
4.1摩擦片設(shè)計(jì)
在嚴(yán)重打滑時(shí)離合器接合過(guò)程離合器表面片,產(chǎn)生大量的熱的時(shí)間相對(duì)較短的時(shí)間,因此,需要大量的集成貼片應(yīng)具有以下性質(zhì):
1,當(dāng)工作的摩擦系數(shù)較高;
2,整個(gè)工作壽命應(yīng)保持其摩擦特性,你希望出現(xiàn)的一步,摩擦系數(shù)衰退;
3,在短時(shí)間內(nèi)能吸收相對(duì)高的能量,以及良好的耐磨性;
4,能承受高壓板載荷作用在離合器接合過(guò)程中表現(xiàn)出良好的性能;
5,能抵抗離心力在高速高負(fù)荷而不損壞;
6,在發(fā)動(dòng)機(jī)扭矩,足夠的剪切強(qiáng)度的傳送;
7,具有轉(zhuǎn)動(dòng)慣量小,材質(zhì)優(yōu)良加工性能;
8,在整個(gè)工作溫度范圍內(nèi),并配合料壓板,飛輪具有良好的摩擦性能兼容;
圖9中,雙表面摩擦是高度可溶污垢的性能,不影響他們的摩擦;
10,具有良好的價(jià)格/性能比,它不會(huì)對(duì)環(huán)境造成污染。
鑒于上述情況,近年來(lái),那種在摩擦材料的快速增長(zhǎng)。摩擦材料選擇的基本原則是:
1,以滿(mǎn)足更高的性能標(biāo)準(zhǔn);
2,成本最小化;
3,取石棉的地方。
離合器片的設(shè)計(jì)中使用的金屬陶瓷材料。它是由金屬,陶瓷組分和潤(rùn)滑劑組合物的多元復(fù)合體。所述金屬基片的主要作用是陶瓷元件體接合的方式,并且其中所述潤(rùn)滑劑保持,具有一定的機(jī)械強(qiáng)度形成為一體;陶瓷部件主要作為研磨劑效果;和潤(rùn)滑劑組分,以改善該材料主要由耐發(fā)熱膠著性和戰(zhàn)爭(zhēng)的潤(rùn)滑粘度,摩擦,工作順利。潤(rùn)滑劑組件和陶瓷組件一起形成陶瓷摩擦磨損性能調(diào)節(jié)劑。
這種材料可以完成各種需求和良好的上提,所以我選擇了這種材料。摩擦片的尺寸參數(shù)在第2.3節(jié)中已經(jīng)查表得出,不再敘述[6]。
4.2從動(dòng)盤(pán)轂設(shè)計(jì)
從動(dòng)盤(pán)花鍵孔與傳動(dòng)花鍵軸的第一軸的前端移動(dòng)至與矩形花鍵聯(lián)接到從動(dòng)板易可軸向移動(dòng)的側(cè)翼定心。花鍵的尺寸根據(jù)根據(jù)GB1144-74選定(見(jiàn)表4.1)的外徑和發(fā)動(dòng)機(jī)扭矩驅(qū)動(dòng)板。易花從動(dòng)盤(pán)鎖孔鍵齒花鍵外的大約直徑(1.0?1.4)倍(對(duì)于離合器的工作條件差上限)的有效長(zhǎng)度,以確保從動(dòng)盤(pán)時(shí)易變形不軸向移動(dòng)。表4.1 GB1144-74
從動(dòng)盤(pán)外徑D/mm
發(fā)動(dòng)機(jī)轉(zhuǎn)矩/Nm
花鍵
齒數(shù)
n
花鍵
外徑
D/mm
花鍵
內(nèi)徑
d/mm
鍵齒寬
b/mm
有效
齒長(zhǎng)
l/mm
擠壓
應(yīng)力
/MPa
160
50
10
23
18
3
20
10
180
70
10
26
21
3
20
11.8
200
110
10
29
23
4
25
11.3
225
150
10
32
26
4
30
11.5
250
200
10
35
28
4
35
10.4
280
280
10
35
32
4
40
12.7
300
310
10
40
32
5
40
10.7
325
380
10
40
32
5
45
11.6
350
480
10
40
32
5
50
13.2
380
600
10
40
32
5
55
15.2
410
720
10
45
36
5
60
13.1
430
800
10
45
36
5
65
13.5
450
950
10
52
41
6
65
12.5
花鍵尺寸選定后應(yīng)進(jìn)行擠壓應(yīng)力 ( MPa)及剪切應(yīng)力τj ( MPa)的強(qiáng)度校核:
(4.1)
(4.2)
式中: ,—分別為花鍵外徑及內(nèi)徑,mm;
n—花鍵齒數(shù);
,b—分別為花鍵的有效齒長(zhǎng)及鍵齒寬,mm;
z—從動(dòng)盤(pán)毅的數(shù)目;
—發(fā)動(dòng)機(jī)最大轉(zhuǎn)矩,Nmm。
從動(dòng)盤(pán)毅通常由40Cr , 45號(hào)鋼、35號(hào)鋼鍛造,并經(jīng)調(diào)質(zhì)處理,HRC28~32。
由表4.1選取得:
花鍵齒數(shù)n=10;
花鍵外徑D=35mm;
花鍵內(nèi)徑D=28mm;
鍵齒寬b=4mm;
有效齒長(zhǎng)l=35mm;
擠壓應(yīng)力=10.4MPa;
校核=19.342MPa;
=8.324MPa符合強(qiáng)度得要求。
4.3從動(dòng)片設(shè)計(jì)
從動(dòng)片一般1.3?2.0mm厚鋼板沖壓。有時(shí)磨薄盤(pán)形的外邊緣,以0.65?1.0mm時(shí),以減少其慣性。從動(dòng)片材料,具有高碳鋼(50或85鋼)或鋼65Mn鋼,熱處理硬度HRC38?48與它們的結(jié)構(gòu)類(lèi)型,整體風(fēng)格即沒(méi)有波形彈簧片從動(dòng)片,一般;使用分離(或組合)波形彈簧片帶動(dòng)電影,電影驅(qū)動(dòng)使用08鋼,氰化物表面硬度HRC45,層深0.2?0.3毫米;波形彈簧采用65Mn鋼鋼,熱處理硬度HRC43?51。
4.4扭轉(zhuǎn)減振器設(shè)計(jì)
4.4.1扭轉(zhuǎn)減振器的功能
為了降低汽車(chē)變速器,通常是一系列與在傳動(dòng)系,其安裝在離合器板扭轉(zhuǎn)阻尼器的彈性阻尼裝置的振動(dòng)。彈性元件,以減少前傳動(dòng)系扭轉(zhuǎn)剛度,減少一個(gè)三節(jié)點(diǎn)系統(tǒng)的固有頻率的傳動(dòng)系扭轉(zhuǎn)振動(dòng)模態(tài),從而使更嚴(yán)重的扭轉(zhuǎn)振動(dòng)速度出通常的速度范圍(當(dāng)然,在實(shí)踐中,要做到這一點(diǎn)這是很困難的);其扭轉(zhuǎn)振動(dòng)阻尼元件用于消耗能量,從而可以有效降低諧振負(fù)載,非諧振負(fù)載和驅(qū)動(dòng)列車(chē)噪聲[7]。
4.4.2 扭轉(zhuǎn)減振器的結(jié)構(gòu)類(lèi)型的選擇
圖4.1示出了幾個(gè)扭轉(zhuǎn)阻尼器的框圖,它們之間的區(qū)別是使用不同的彈性元件和阻尼裝置。使用螺旋彈簧和扭轉(zhuǎn)阻尼器的摩擦元件(見(jiàn)圖4.1ad)已被最廣泛使用的。在這種結(jié)構(gòu)中,有六個(gè)窗口上的從動(dòng)板和從動(dòng)板易開(kāi),配備在每個(gè)窗口中的阻尼彈簧,并由此傳遞到從動(dòng)件易發(fā)動(dòng)機(jī)轉(zhuǎn)矩從動(dòng)盤(pán)時(shí)沿圓周必要切線彈簧裝置從動(dòng)件,所以很快從動(dòng)件和從動(dòng)盤(pán)易彈性地連接在一起,從而改變了傳輸剛度。當(dāng)相同的大小和功能的彈片同時(shí),扭轉(zhuǎn)阻尼器的線性彈性性質(zhì)。這種扭轉(zhuǎn)阻尼器具有線性特性,結(jié)構(gòu)比較簡(jiǎn)單,廣泛用于汽油的汽車(chē)。當(dāng)六泉屬于兩個(gè)或三個(gè)尺寸從小到大,剛度投產(chǎn)按照順序,然后叫了兩個(gè)或三個(gè)非線性扭轉(zhuǎn)阻尼器(圖4.1E為三個(gè))。該非線性扭轉(zhuǎn)阻尼器,寬現(xiàn)代車(chē)輛,特別是在汽車(chē)用柴油發(fā)動(dòng)機(jī)。柴油發(fā)動(dòng)機(jī)的怠速轉(zhuǎn)速不勻較大,常引起撞擊傳動(dòng)齒輪齒常問(wèn)。為此,扭轉(zhuǎn)阻尼器可以有兩個(gè)或三個(gè)不共線的彈性性質(zhì)。一流的剛度是非常小的,說(shuō)閑著水平,以減少傳輸空閑噪音效果顯著。線性扭轉(zhuǎn)阻尼器可以有效地在負(fù)載情況下(通常是最大發(fā)動(dòng)機(jī)扭矩)只工作,扭轉(zhuǎn)阻尼器和三階非線性彈性性質(zhì)都適合他們的有效工作以展開(kāi)負(fù)載情況的范圍內(nèi),這有助于避免傳動(dòng)系統(tǒng)共振,減少扭轉(zhuǎn)振動(dòng)及噪聲,同時(shí)驅(qū)動(dòng)并在傳動(dòng)系空轉(zhuǎn)車(chē)。
見(jiàn)中空?qǐng)A柱形扭轉(zhuǎn)阻尼器橡膠彈性元件(圖4.1f)或星形等形狀,而且還具有非線性彈性性質(zhì)。雖然結(jié)構(gòu)簡(jiǎn)單,與橡膠變形的大的內(nèi)部摩擦,因而不需要額外的減震裝置,但因?yàn)樗鼤?huì)顯著增加的從動(dòng)板的轉(zhuǎn)動(dòng)慣量,和工作所需的特殊橡膠在離合器熱狀態(tài)制造,并且因此還沒(méi)有被廣泛采用。減振器的阻尼元件多采用摩擦片,在(圖4.1a)的結(jié)構(gòu)中阻尼摩擦片的正壓力靠從
1
圖4.1減振器結(jié)構(gòu)圖
活動(dòng)板及阻尼板之間建立鉚釘連接。其結(jié)構(gòu)很簡(jiǎn)單,但是當(dāng)摩擦墊磨損,阻尼力矩將減少或甚至消失。為了確保良好的壓力,使一個(gè)穩(wěn)定的阻尼轉(zhuǎn)矩,可加入到一個(gè)錐形彈簧(圖4.1c,d)中,在使用不同的剛度碟形彈簧和摩擦板的圓柱形螺旋彈簧以建立兩個(gè)不同的正壓力(圖分別4.1D),非線性變化,可以實(shí)現(xiàn)阻尼力矩。
4.5本章小結(jié)
本章設(shè)計(jì)計(jì)算和檢查的部件的離合器盤(pán)組件的。從動(dòng)盤(pán)包括摩擦,彈片減震器,從輪轂驅(qū)動(dòng)和一些其它緊固部件傳遞力。考慮到它的要求和特性的所有方面,提高了原始設(shè)計(jì)和材料的某些部分,使整體效果更好。并改善自己的生活和汽車(chē)離合器的舒適性等。
結(jié) 論
該設(shè)計(jì)的設(shè)計(jì)和分析在濕式離合器中使用,在濕式離合器分類(lèi),所述的濕式離合器和組合物,和它們的特性的原理。詳細(xì)推導(dǎo)過(guò)程中積累了大量的數(shù)據(jù),和一個(gè)濕式離合器平局的成功完成圖。
主要描述離合器的發(fā)展現(xiàn)狀,和它的工作原理,在此過(guò)程中,比較組合,初步確定合適的形式離合器結(jié)構(gòu)后,選擇拉式濕式離合器,以及與一扭轉(zhuǎn)阻尼器,以計(jì)算背面提供理論基礎(chǔ)。
在計(jì)算中,首先確定摩擦盤(pán)直徑的大小,然后基于其他部分裝配和設(shè)計(jì)進(jìn)行了計(jì)算的大小。通過(guò)計(jì)算摩擦板的外徑檢查,計(jì)算其他部件的選定尺寸,然后進(jìn)行檢查,以確定它是否能夠滿(mǎn)足設(shè)計(jì)要求。設(shè)計(jì)包括一個(gè)從動(dòng)盤(pán)總成設(shè)計(jì)驗(yàn)證,檢查模板設(shè)計(jì),設(shè)計(jì)驗(yàn)證離合器蓋和離合器蓋設(shè)計(jì)驗(yàn)證和優(yōu)化。專(zhuān)門(mén)設(shè)計(jì)來(lái)計(jì)算摩擦板,多個(gè)部件,螺旋彈簧,壓板,離合器蓋,變速箱片劑扭轉(zhuǎn)阻尼器組件
之后的工作是通過(guò)計(jì)算機(jī)Pro / E軟件完成學(xué)習(xí)使用,對(duì)整個(gè)離合器總成圖,從動(dòng)盤(pán)總成,壓盤(pán),螺旋彈簧,摩擦片繪制,在繪制離合器組件的過(guò)程中,隨著進(jìn)一步的了解,并提高計(jì)算的遺漏部分。
這樣的設(shè)計(jì)可以提出建議,以?xún)?yōu)化和修改離合器的原創(chuàng)設(shè)計(jì),從它的未來(lái)設(shè)計(jì)過(guò)程中的參考。通過(guò)這種優(yōu)化改進(jìn)了原有的設(shè)計(jì)滿(mǎn)足了離合器,增加使用這種類(lèi)型的車(chē),舒適性,提高汽車(chē)的目的效率。
致 謝
首先要表示衷心的感謝所有的老師,在短短幾年內(nèi),它們都有助于我們的成長(zhǎng)和進(jìn)步。在本次畢業(yè)設(shè)計(jì)中,有許多老師給予了指導(dǎo)和幫助,特別是教師在畢業(yè)設(shè)計(jì)的全過(guò)程,給了我們很大的幫助,因?yàn)槲覀兊慕處?,兢兢業(yè)業(yè),一絲不茍。
至此,本次畢業(yè)將上報(bào)通道,但老師的教學(xué),但人們永遠(yuǎn)不會(huì)忘記,在畢業(yè)設(shè)計(jì),我不僅學(xué)到了知識(shí),也讓我學(xué)到了很多道理,總之,很多。
即使我做了很多努力,在畢業(yè)過(guò)程中,但由于我的水平有限,錯(cuò)誤和違規(guī)行為的設(shè)計(jì)確實(shí)發(fā)生,我們希望老師提出寶貴意見(jiàn)。最后,引用了他的學(xué)術(shù)著作的學(xué)術(shù)前輩和同行感謝的文字和研究!
我再次表示衷心的感謝敬愛(ài)的老師!
參考文獻(xiàn)
[1]臧杰,閻巖.汽車(chē)構(gòu)造[M].機(jī)械工業(yè)出版社,2005,8.
[2]王望予主編.汽車(chē)設(shè)計(jì)[M].機(jī)械工業(yè)出版社,2004,8.
[3]徐石安,江發(fā)潮.汽車(chē)離合器[M].清華大學(xué)出版社,2005,2.
[4]劉惟信主編.汽車(chē)設(shè)計(jì)[M].清華大學(xué)出版社,2001,7.
[5]林世裕主編.螺旋彈簧與碟形彈簧離合器的設(shè)計(jì)與制造[M].東北大學(xué),2005.
[6]汽車(chē)標(biāo)準(zhǔn)匯編(2000~2004) [M].中國(guó)汽車(chē)技術(shù)研究中心標(biāo)準(zhǔn)研究所,2005.
[7]閻春利,張希棟.汽車(chē)離合器螺旋彈簧的優(yōu)化設(shè)計(jì)[J]. 林業(yè)機(jī)械與木工設(shè)備,2006,3.
[8]廖林清,曹建國(guó).汽車(chē)離合器螺旋彈簧的三次設(shè)計(jì)[J].四川兵工學(xué)報(bào),2001,2.
[9]司傳勝.汽車(chē)濕式離合器的優(yōu)化設(shè)計(jì)[J]. 林業(yè)機(jī)械與木工設(shè)備,2004,12.
[10]李林,劉惟信. 汽車(chē)離合器螺旋彈簧的優(yōu)化設(shè)計(jì)[J].清華大學(xué)學(xué)報(bào),2000,5.
[11]林明芳等. 汽車(chē)離合器螺旋彈簧的優(yōu)化設(shè)計(jì)[J].汽車(chē)工程,2003,2.
[12]劉紅欣.螺旋彈簧應(yīng)力分布的試驗(yàn)和有限元分析[J].力學(xué)與實(shí)踐,2003, 3.
[13]張衛(wèi)波.汽車(chē)濕式離合器智能優(yōu)化設(shè)計(jì)技術(shù)研究[J].中國(guó)工程機(jī)械學(xué)報(bào),2007,1.
[14]肖文穎,許海華.離合器螺旋彈簧的優(yōu)化設(shè)計(jì)[J].公路與汽運(yùn),2007,4.
[15]程漢應(yīng).汽車(chē)離合器摩擦片數(shù)量選擇及其參數(shù)優(yōu)化設(shè)計(jì)[J].汽車(chē)工程,2001,7.
[16]浦定真.濕式離合器的設(shè)計(jì)與研究[J].汽車(chē)技術(shù),2006,6.
[17]趙波,趙曉昱.汽車(chē)離合器的相關(guān)參數(shù)優(yōu)化與分析[J].拖拉機(jī)與農(nóng)業(yè)運(yùn)輸車(chē),2007,2.
[18]LiuWeixin,GePing,LiWei.OptimalDesignTorsionalDampersinAutomobileClutch.ProceeDingsoftheInternationalConferenceonCADofMachinery.2001.
[19]Ahern,Kathy,Manathung,Catherine.Clutch-StaringStalleDResearchStuDets.InnovativeHigherEDucation.2004.
22
目錄
第1章 緒論 4
1.1 引言 4
1.2 離合器的發(fā)展 4
1.3 螺旋彈簧離合器的結(jié)構(gòu)及其優(yōu)點(diǎn) 5
1.4 設(shè)計(jì)內(nèi)容 7
1.5 PRO/E軟件的特點(diǎn) 7
1.6 方案的確定 8
第2章 基本尺寸的選擇 9
2.1 離合器基本性能關(guān)系式 9
2.2 后背系數(shù)的選擇 9
2.3摩擦片外徑的確定 9
2.4摩擦片pro/E繪圖過(guò)程 11
2.5本章小結(jié) 13
第3章 主動(dòng)部分設(shè)計(jì) 14
3.1壓盤(pán)設(shè)計(jì) 14
3.1.1壓盤(pán)參數(shù)的選擇及校核 14
3.1.2壓盤(pán)pro/E繪圖過(guò)程 14
3.2 離合器的設(shè)計(jì) 16
3.3 傳動(dòng)片設(shè)計(jì) 16
3.4 本章小結(jié) 17
第4章 從動(dòng)盤(pán)總成設(shè)計(jì) 18
4.1摩擦片設(shè)計(jì) 18
4.2從動(dòng)盤(pán)轂設(shè)計(jì) 18
4.3從動(dòng)片設(shè)計(jì) 20
4.4扭轉(zhuǎn)減震器設(shè)計(jì) 20
4.4.1扭轉(zhuǎn)減震器的功能 20
4.4.2扭轉(zhuǎn)減震器的結(jié)構(gòu)類(lèi)型的選擇 22
4.4.3扭轉(zhuǎn)減震器的參數(shù)確定 23
4.4.4減震彈簧的尺寸確定 24
4.4.4扭轉(zhuǎn)減震器的PRO/E繪圖過(guò)程 25
4.5本章小結(jié) 28
第5章 螺旋彈簧設(shè)計(jì) 29
5.1螺旋彈簧的概念 29
5.2螺旋彈簧的彈性特性 29
5.3螺旋彈簧的強(qiáng)度計(jì)算 31
5.4螺旋彈簧的基本參數(shù)的選擇 32
5.5螺旋彈簧的PRO/E繪圖過(guò)程 34
5.6本章小結(jié) 36
結(jié)論 37
致謝 38
參考文獻(xiàn) 39
Tribology International 41 (2008) 824830Wet clutch friction characteristics obtained fromsimplified pin on disc testPa r Marklund?, Roland LarssonDivision of Machine Elements, Department of Applied Physics and Mechanical Engineering, Lulea University of Technology, Lulea , SE-97187, SwedenReceived 2 January 2007; received in revised form 14 November 2007; accepted 16 November 2007Available online 3 January 2008AbstractThe frictional behavior of wet clutches in vehicle drivetrains is critical for their overall behavior. During the development of new wetclutch systems there is a need to know this friction behavior. The transferred torque is normally investigated in test rigs where the frictionin a sliding interface between a friction disc and separator disc is investigated. These test rigs can be designed differently, depending onthe working conditions of the investigated clutch. However, it is possible today to simulate the clutch behavior and not limit ourselves toonly using measurements from test rigs for the design of the wet clutch. The torque transferred by the clutch during engagement can beroughly divided into full film torque and boundary lubrication torque. The full film regime is possible to simulate quite well, whereas thefriction in the boundary regime is much more difficult to simulate due to its strong additive dependency. To obtain a good prediction ofthe total engagement, friction measurements in the boundary lubrication regime are still needed. These measurements should be easy toperform and fast tests are preferable. Friction coefficients for the whole range of sliding speed, interface temperature and nominal surfacepressure should be measured. To use these measurements in simulations and get a better understanding of the friction behavior, it is alsopreferable to conduct these measurements on a small test sample, for which the temperature and sliding speed can be regarded asconstant.Here, the friction of a small sample of a wet clutch friction disc is investigated in a pin on disc test and the temperature is measured inthe sample during the tests. Measurements are compared with measurements from a test rig for whole friction discs. A goodcorrespondence between the frictional behaviors of the different measurement methods is achieved.r 2007 Elsevier Ltd. All rights reserved.Keywords: Wet clutch; Friction measurement; Pin on disc1. IntroductionWet clutches are often used in vehicle drivetrains. Theworking conditions of different clutches in the transmissiongreatly vary depending on the application. Wet clutches inautomatic transmissions are often used as lock-up clutchesbetween different rotating parts in the gearbox, where theinitial sliding velocity of the clutch interface can be quitehigh. Other parts of the drivetrain can have wet clutchesthat work with much lower sliding speeds and highersurface pressures. This is the case in limited slip differ-entials, which normally have a rather low surface slidingspeed, and seldom reach the state of lock up. For thedrivetrain to work smoothly without any unnecessary noiseand vibrations, the friction characteristics of the wetclutches have to be thoroughly investigated. Dependingon the working conditions some clutches will work in fullfilm, mixed and boundary lubrication, whereas others willwork mainly in boundary lubrication regime. To get abetter understanding of the frictional behavior of wetclutches, several simulation models have been developed asa complement to traditional measurement methods 16.Most investigations include simulations of clutches inautomatic transmissions that start the engagement at ahigh difference in rotational speed and then reach a state oflock up. The high speed in these cases implies that theclutch will work in full film lubrication, the largest part ofthe engagement. Such an engagement process is possibleto simulate with good results. There will be a torqueARTICLE IN PRESS front matter r 2007 Elsevier Ltd. All rights reserved.doi:10.1016/j.triboint.2007.11.014?Corresponding author.E-mail address: par.marklundltu.se (P. Marklund).contribution from the boundary friction at the end of theengagement. This friction is much more difficult tosimulate, since it is very additive dependent. For this partof the engagement there is still a need to do frictionalmeasurements that can be used in simulations. For clutchesworking mainly in boundary lubrication, during longerperiods,thesimulationswillbeverydependentonmeasurements. Examples of simulation models for thiskind of application are temperature simulations used topredict changes in torque transfer during a long engage-ment with high surface pressure and a small limited sliptorque as in Marklund et al. 6. For these kinds of semi-empirical simulation models, we encounter a need for amore local friction measurement than what is possible tomeasure in a test rig that measures torque transfer fromone whole friction disc 3,7, or larger parts of a frictiondisc, including grooves 8. A measurement method to dothese local measurements should measure on a quite smallsample of the friction disc, to get the local effects. It shouldalso be possible to measure the temperature inside thissmall sample close to the sliding interface, since it is shownin 6,7, that the temperature will affect the friction. If thetest sample has no grooves, the measured friction will notbe geometry dependent. This is not the case whenmeasuring torque transfer from a whole friction disc,where grooves and other surface patterns also can affectthe torque. A measurement method based on a pin on disctest can fulfill all these demands. A special pin is designedwith a holder for a small sample of the friction disc where athermocouple is mounted to monitor the temperatureduring friction measurements. This method can also give abetter understanding about the friction phenomena thanwhat is possible in whole friction disc test rigs. The frictioncoefficient and its variation with temperature, slidingvelocity and surface pressure is measured in this paper ina pin on disc test. The test is relatively fast and the normalrange of operational parameters are covered within 2h.Another advantage of the proposed test is the possibility tomeasure the local friction effect, which is of great interestwhen using measurements in simulations.2. MethodA measurement of boundary lubrication is needed to beable to simulate torque transfer in wet clutches working inboundary lubrication regime. This friction is very additivedependent, and is therefore a function of the additivesadsorption and reaction on the surfaces. Adsorption,desorption and reactions depend critically on the operatingconditionstemperature,slidingvelocityandcontactpressure. To obtain a friction coefficient for the wholeworking range of temperature, velocity and pressure, manymeasurements are required to describe the friction. Thefriction in the sliding interface of a wet clutch is oftenmeasured as output torque for one whole friction disc incontact with one steel separator disc. This is a good methodto measure the final output from an existing wet clutchdesign, but if only the output torque is measured, thefriction coefficient that can be computed for the clutch issimply the mean friction coefficient. Temperature andvelocity are not constant in the interface, meaning that thefriction is also not constant, see 2,6.To get a better understanding of how the friction can bedescribed in terms of temperature, velocity and surfacepressure, a testing method that measures more local effectshas been developed.2.1. Pin on discA special holder is developed for a pin on disc test toenable these local friction measurements for the materialcombinations used in wet clutch systems. In a pin on disctest, a stationary pin is loaded axially in contact with arotating disc, as in the schematic sketch shown in Fig. 1.The friction force on the pin can be measured, thus makingit easy to compute the friction coefficient. The pin on discmachine used in these tests is a Phoenix Tribology TE67.In these measurements, a special pin, Fig. 2, is madewhich has a holder for a small specimen made of a frictiondisc, Fig. 3.A thermocouple that measures the temperature at about0.3mm from the contact surface is inserted in the specimen.Since the specimen only has a diameter of 3.0mm, aconstant velocity and temperature can be assumed over thewhole test specimen contact area. This makes the measuredfriction suitable to use in wet clutch simulations and gives abetter understanding of the boundary friction. The frictionmaterial on the friction discs used in this investigation ismade of sintered bronze.The disc is designed as a holder for a piece of the steelseparator disc used in the real wet clutch system. Thismeans that the test specimen will have the same propertiesas the separator disc used in the clutch. The lubricant usedin these experiments is a semi-synthetic oil tailor-made forthe Haldex Limited Slip Coupling, which is a limited slipdifferential manufactured by Haldex Traction AB. Thisapplication is further described in 9.The friction measurements are in this case made tocorrespond with the working conditions of a wet clutch in alimited slip differential, meaning that the sliding velocitiesARTICLE IN PRESSFaxFig. 1. Schematic sketch of a pin on disc apparatus.P. Marklund, R. Larsson / Tribology International 41 (2008) 824830825will be fairly low while there will be quite high tempera-tures and surface pressures. The ranges for temperature,velocity and surface pressure and the resolution of themeasurements are shown in Table 1.The sampling rateduring the measurements is 10Hz.2.2. Test procedureThe tests start at an ambient temperature, 221C, and theequipment is gradually heated during the measurements.Before the test starts, the surfaces are run in with the testlubricant. The disc rotates at a speed of 100 revolutions perminute for 10min with an applied load, corresponding to asliding speed of 0.15m/s.During the test, the velocity is increased from 0 to 0.5m/s,followed by a decrease in speed to a standstill. The wholemeasurement takes about 30s. When the test is finished, aheater is engaged to warm up the test equipment to the nexttemperature level and a new measurement is conducted.There is a temperature difference of 51C between thetemperature levels. The total temperature range for whichthe friction is measured is 221001C. The whole test seriesis therefore performed for 16 different measurements withdifferent start temperatures.3. Results and discussionDuring each test the velocity is increased from standstillto 0.5m/s and then decreased back to standstill. Thisvariation in speed is not linear, and a typical velocity plotfor the tests is shown in Fig. 4(a).3.1. Temperature variation during testThe temperature in the test specimen increases due tofrictional heating during the velocity increase. When thevelocity is decreased, the temperature will decrease. Thistemperature behavior during the test is visualized in Fig. 4(b)for a start temperature of 251C. It is obvious from this figurethat there is no significant delay in the temperaturemeasurement, indicating that the measured temperature isa good measure of the mean temperature in the slidinginterface. The sliding interface is located about 0.3mm fromthe thermocouple. The temperature measurement is also agood indicator that the temperature is very dependent on thesurface heat flux, since the temperature will immediately startto decrease when the velocity is decreased, see Fig. 4. Themeasured temperature in this point, 0.3mm from the surface,will in this paper be referred to as interface temperature.3.2. Friction measurementsTo use the value of the friction coefficient in wet clutchsimulations, or for a wet clutch control software, the mostimportant is to describe the friction coefficient as afunction of sliding speed, v, interface temperature, T, andnominal surface pressure, p. One test cycle in this pin ondisc test will give this frictional behavior for one combina-tion of friction material, lubricant and load. Results fromthe measurements can be visualized in differently. One wayARTICLE IN PRESSFig. 2. Pin with holder for test specimen.Fig. 3. Test specimens from bronze friction disc. Specimen to the left withdrilled hole for thermocouple.Table 1Working range and resolutionWorking rangeResolutionNominal surface pressure, p (MPa)4.08.0Temperature, T ?C221000.2Rotational speed (rpm)03181.0) Sliding speed, v (m/s)00.50.0016Friction force, Ffric(N)0490.015) Friction coefficient, m ()o5:3 ? 10?4P. Marklund, R. Larsson / Tribology International 41 (2008) 824830826is to plot the friction coefficient as a function of slidingspeed and interface temperature, as in Fig. 5. Themeasurements are statistically very good with little spreadbetween the measurements.There are basically two ways to describe the relationshipbetween friction coefficient, sliding speed and interfacetemperature. A mathematical expression can be fitted tothe measured friction data, or the data could be stored in alarge matrix from which friction coefficients could beinterpolated from nearby cases. A mix between these twomethods can also be used 6. The advantage with anapproximated function is that it will not need a largestorage space, and that is vital for control softwares withsmall memory capacities. Another advantage with thismethod is that the friction coefficient will be easy tocompute. The disadvantage is the limited flexibility of thechosen expression that can only be applied for a specificfrictional behavior. For this case, the expressionm a1 a2? tanhv ? a3 a4? T a5? T2 a6? T3 a7? v a8? vT a9? vT21gives a good approximation to the measured frictionaldata, see Fig. 6.In this equation m is the friction coefficient, v is thesliding velocity and T is the interface temperature.Another way to visualize frictional behavior is to use thisexpression and plot the friction coefficient as functionof sliding speed for different interface temperatures, seeFig. 7.3.3. Comparison with other test rigTraditional friction measurements of wet clutches areperformed in test rigs with one whole pair of friction discs3,10. In 8, larger parts of a friction disc, includinggrooves, have also been tested in a pin on disc test. Withthis test method, where a small sample of the friction disc istested, it is important to investigate the correlation withother performed tests. Fig. 8 shows a comparison betweencurve fits from the measured friction coefficient in the pinon disc and a wet clutch test rig 10 with nominal pressuresof 8.0MPa.ARTICLE IN PRESSv m/s020406000.10.20.30.40.5020406025262728t sT Ct sFig. 4. Temperature variation and sliding speed during one test cycle: (a) sliding speed; (b) temperature.0.10.20.30.450751000.040.060.080.10.12? -T Cv m/sFig. 5. Friction coefficient as function of sliding speed and interfacetemperature. Nominal pressure 8:0MPa. 0.10.20.30.40.52550751000.020.040.060.080.10.12? -T Cv m/sFig. 6. Friction coefficient versus sliding speed and interface temperature.Measured data and approximative mathematical surface. Nominalpressure 8:0MPa. The mesh is the approximation according to Eq. (1).P. Marklund, R. Larsson / Tribology International 41 (2008) 824830827Friction coefficients from the different measurementsshow the same trends in variation of friction coefficientthroughout the whole range of speed and temperature.However, the friction coefficient is consistently slightlysmaller in the wet clutch test rig measurements. Themeasured friction coefficient should not be exactly thesame for the different test rigs, since grooves are notincluded in the pin on disc test.The nominal pressure on the friction discs used in thewet clutch test rig is calculated for the net surfaced area incontact in the interface, i.e. the groove area subtractedfrom the total disc area. A smaller difference in this areafrom the manufacturing process of the discs, could affectthe geometry of the friction material and therefore the netsurface area and nominal pressure for a given axial load,whichwouldtheninfluencethefrictioncoefficientsvariation with pressure.3.4. Load dependenceThe normal load does not greatly influence on thefriction coefficient in these measurements. The fact that thefriction coefficient is not very load dependent has also beenearlier observed in other experiments, such as Ma ki 11.Fig. 9 shows the friction coefficient for three differentloads in the whole range of sliding velocity. Here, thelargest difference in friction coefficient is about 5% at301C, Fig. 9(a). At 501C, Fig. 9(b), the difference infriction coefficient at different loads is not very large;hence, at these temperatures and higher it is possible todescribe friction coefficient as only a function of slidingvelocity and temperature without loosing much precision.At higher temperatures, Fig. 9(c) and (d), the difference infriction coefficient for different loads is even smaller. Thelowest friction coefficient is achieved for the mediumpressure of the three investigated pressures. This makesthe difference in friction coefficient to be dependent onthe load less plausible. It is possible that the differencein friction coefficient is instead dependent of other vari-ables, such as surface structure and friction materialcomposition, indicating that the friction coefficient couldbe described just as a function of sliding velocity andtemperature for the whole temperature range. Fig. 9 alsoshows that for sliding velocities about 0.5m/s, the frictioncoefficient, m, will be about 0.1 for all investigated loadsand temperatures.3.5. Error analysisAs described in Section 3.4 the difference in frictioncoefficient for different surface pressures is not large. Thefriction coefficient could therefore be described as afunction of only interface temperature and sliding velocitywithout loosing much precision. As a measure of thedeviation of the measured data for the maximum andminimum load, the maximum deviation from mean frictioncoefficient computed for maximum and minimum loads isvisualized in Fig. 10.Here, six subsequent measurements at two differentloads are investigated. These measurements will containover 60;000 measurement points over the measured regiondescribed in Table 1. Fig. 10(a) shows plots from the curvefit expression (1) for each measurement at an interfacetemperature of 601C. From these functions the meanfriction coefficient for 601C is computed. Fig. 10(b) showsthe largest absolute deviation from the mean frictioncoefficient for each sliding velocity. This illustrates that themaximum absolute deviation in friction coefficient forthese measurements in the velocity interval 0.050.4m/s isless than 0.004.ARTICLE IN PRESS30C50C70C90C00.10.20.30.40.50.020.040.060.080.10.12? -v m/sFig. 7. Friction coefficient as function of sliding speed at differentinterface temperatures. Based on curve fitted mathematical surface.Nominal pressure 8:0MPa.35C Pin on Disc35C Wet Clutch Test Rig60C Pin on Disc60C Wet Clutch Test Rig00.040.050.060.080.090.100.110.07? -0.50.40.30.20.1v m/sFig. 8. Comparison between friction measurements in pin on disc and wetclutch test rig 10. Nominal pressure 8:0MPa.P. Marklund, R. Larsson / Tribology International 41 (2008) 8248308284. ConclusionsA simplified experiment is developed where the bound-ary friction behavior of a wet clutch can be investigated ina pin on disc test. The advantages with this method are thatit is inexpensive and time saving to test different combina-tions of friction materials and lubricants. This makes themethod suitable for screening-tests where a large numberof different combinations can be investigated. Anotheradvantage is that the pin on disc test measures more localfriction than what is possible with torque measurementsfrom a test rig where whole friction discs are investigated.This local behavior is preferable when using measuredfriction coefficients in simulations, such as 6.The fact that this test method is ra
收藏