河南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四章 三角形微專項(xiàng)
《河南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四章 三角形微專項(xiàng)》由會(huì)員分享,可在線閱讀,更多相關(guān)《河南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四章 三角形微專項(xiàng)(12頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、河南省2022年中考數(shù)學(xué)總復(fù)習(xí) 第四章 三角形微專項(xiàng) 突破點(diǎn)1倍長(zhǎng)中線 倍長(zhǎng)中線法:延長(zhǎng)三角形一邊的中線至一點(diǎn),使所延長(zhǎng)的部分與該中線相等,并連接該點(diǎn)與這條邊的一個(gè)頂點(diǎn),得到兩個(gè)全等的三角形.這種方法主要用于構(gòu)造全等三角形或證明對(duì)應(yīng)邊之間的關(guān)系. 倍長(zhǎng)中線——常用輔助線添加方法(倍長(zhǎng)中線等中線,等量關(guān)系一大片) 敘述 圖示 結(jié)論 基本圖形:在△ABC中,AD為BC邊上的中線. 倍長(zhǎng)中線:延長(zhǎng)AD到點(diǎn)E,使ED=AD,連接BE. ①△ACD≌△EBD; ②根據(jù)三角形三邊的關(guān)系得到: . 倍長(zhǎng)中線的變形 作法一:M為AB上一點(diǎn),連接MD并延長(zhǎng)到點(diǎn)N,使ND
2、=MD,連接CN; 作法二:過點(diǎn)C作CN∥AB,與過點(diǎn)D的直線交于點(diǎn)N,該直線與AB交于點(diǎn)M. △BDM≌△CDN 如圖,在△ABC中,AD是中線,∠BAC=∠BCA,點(diǎn)E在BC的延長(zhǎng)線上,CE=AB,連接AE.求證:AE=2AD. 思路分析 見到中線,試一下倍長(zhǎng)中線的輔助線作法,得到相等的線段,再利用三角形全等和等量代換進(jìn)行證明. 自主解答 1.如圖,在△ABC中,AB=5,AC=3,則中線AD的取值范圍是 .? (第1題) (第2題) 2.如圖,在△ABC中,點(diǎn)E,F分別在AB,AC上,點(diǎn)D是
3、BC邊上的中點(diǎn),DE⊥DF,則BE+CF與EF的大小關(guān)系為 .? 3.如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD上一點(diǎn),且BE=AC,延長(zhǎng)BE交AC于點(diǎn)F.求證:AF=EF. 4.如圖,在△ABC中,AD交BC于點(diǎn)D,點(diǎn)E是BC的中點(diǎn), EF∥AD交CA的延長(zhǎng)線于點(diǎn)F,交AB于點(diǎn)G,已知BG=CF,求證:AD為△ABC的角平分線. 突破點(diǎn)2旋轉(zhuǎn) 圖形的旋轉(zhuǎn)是近幾年河南中考必考的內(nèi)容.運(yùn)用旋轉(zhuǎn)的全等變換,證明線段相等、和差倍分關(guān)系以及角相等、和差倍分關(guān)系都是近幾年中考常見的類型. 旋轉(zhuǎn)的基本性質(zhì): ①對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
4、 ②對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角; ③旋轉(zhuǎn)前后的圖形全等. 旋轉(zhuǎn)的基本圖形 圖形旋轉(zhuǎn)的要點(diǎn) 利用旋轉(zhuǎn)作輔助線的基本思路 如圖,將∠AOB旋轉(zhuǎn)至∠A'OB',則∠AOA'=∠BOB'. 1.找準(zhǔn)旋轉(zhuǎn)中的“變”與“不變”; 2.找準(zhǔn)旋轉(zhuǎn)前后的“對(duì)應(yīng)關(guān)系”; 3.充分挖掘旋轉(zhuǎn)過程中線段之間的關(guān)系; 4.找旋轉(zhuǎn)點(diǎn),得等邊、等角; 5.證全等或相似; 6.利用全等或相似得到邊、角關(guān)系. 1.以等邊三角形為背景的旋轉(zhuǎn)60°(遇60°旋轉(zhuǎn)60°); 2.以正方形為背景的旋轉(zhuǎn)90°(遇90°旋轉(zhuǎn)90°); 3.將分散的條件通過旋轉(zhuǎn)變換集中在一塊“形成合力”破解難題
5、(若條件是分散的,則試試看把圖形進(jìn)行平移、旋轉(zhuǎn)、翻折). 如圖,將△AOB旋轉(zhuǎn)至△A'OB',連接AA',BB',則△AOA'∽△BOB'. 如圖,在☉O的內(nèi)接四邊形ABCD中,AB=3,AD=5,∠BAD= 60°,點(diǎn)C為的中點(diǎn),則AC的長(zhǎng)是 .? 思路分析 ∵四邊形ABCD是☉O的內(nèi)接四邊形,∴∠ABC+∠ADC=180°,又∵點(diǎn)C為的中點(diǎn),∴BC=CD.將△ABC繞點(diǎn)C旋轉(zhuǎn)至△EDC,則A,D,E三點(diǎn)共線,這樣就把分散的條件集中在一塊了,旋轉(zhuǎn)變換后的圖形是等腰三角形,再利用等腰三角形“三線合一”的性質(zhì)和銳角三角函數(shù)求出AC的值即可.(利用旋轉(zhuǎn)時(shí),一般要滿足兩
6、個(gè)條件:①有相等的邊,②兩角之和為180°) 5.如圖,點(diǎn)P為等邊三角形ABC內(nèi)的一點(diǎn),且點(diǎn)P到△ABC三個(gè)頂點(diǎn)A,B,C的距離分別為1,,,則△ABC的面積為 .? (第5題) (第6題) 6.如圖,在正方形ABCD中,點(diǎn)E為BC上一點(diǎn),點(diǎn)F為CD上一點(diǎn),BE+DF=EF,則∠EAF的度數(shù)為 .? 7.如圖,在△ABC中,∠C=90°,點(diǎn)D,E,F分別在邊CA,AB,BC上,且四邊形CDEF是正方形,已知BE=2.2,EA=4.1,則△BFE和△AED的面積之和為 .? 8.如圖,OA=OD,OA⊥OD,OB=OC,OB⊥OC,經(jīng)過點(diǎn)O的直線l分別交A
7、B,CD于點(diǎn)E,F. (1)試說明:S△OAB=S△OCD; (2)若直線l平分CD,求證:OF=AB. 9.如圖,點(diǎn)D為等腰直角三角形ABC斜邊AB的中點(diǎn),DM⊥DN,DM,DN分別交BC,CA于點(diǎn)E,F. (1)當(dāng)∠MDN繞點(diǎn)D轉(zhuǎn)動(dòng)時(shí),求證:DE=DF; (2)若AB=2,求四邊形DECF的面積. 10.如圖,等腰三角形ABC繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)α到△A1BC1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1,BC1分別相交于點(diǎn)E,F. (1)求證:△BCF≌△BA1D; (2)當(dāng)∠C=α?xí)r,
8、判斷四邊形A1BCE的形狀并說明理由. 一線三直角模型 1.[模型說明] 一線三直角是一個(gè)常見的相似模型,指的是有三個(gè)直角的頂點(diǎn)在同一條直線上構(gòu)成的相似圖形,有些地區(qū)稱“三垂直模型”,也有稱“K形圖”或“M形圖”.(一線三等角不僅可以是直角,也可以是銳角或鈍角.本專題主要研究一線三直角模型) 2.[識(shí)別方法] (1)查找圖形中已知的直角,順著這個(gè)直角的頂點(diǎn)尋找或者構(gòu)造模型中的“一線”; (2)構(gòu)造其他直角,構(gòu)造的直角的頂點(diǎn)必須在“同一條直線”上, “這條直線”可能在已知角的外部,也可能“穿過”這個(gè)角. 3.[構(gòu)造一線三直角的基本步驟] 做題過
9、程中,若出現(xiàn)一直角的頂點(diǎn)在一條直線上的形式,就可以構(gòu)造兩側(cè)的直角三角形,利用全等三角形或相似三角形解決相關(guān)問題.綜合性題目往往就會(huì)把全等和相似的轉(zhuǎn)化作為出題的一種形式.本質(zhì)就是找角、定線、構(gòu)相似. 一線三直角的基本圖形 一般結(jié)論 一線三直角的應(yīng)用 △ACD∽△BAE. 特殊地,當(dāng)AB=AC時(shí),△ACD≌△BAE. ①圖形中已經(jīng)存在“一線三直角”,直接應(yīng)用模型解題; ②圖形中存在“一線兩直角”,補(bǔ)上“一直角”構(gòu)造此模型; ③圖形中只有直線上的一個(gè)直角,補(bǔ)上“兩直角”構(gòu)造此模型; ④圖形中只有一個(gè)直角,過該直角頂點(diǎn)補(bǔ)上“一線”,再補(bǔ)上“兩直角”,構(gòu)造此模型; ⑤對(duì)坐
10、標(biāo)系中在x軸或y軸(也可以是平行于x軸或y軸的直線)上構(gòu)造“一線三等角”是解決問題的關(guān)鍵. 突破點(diǎn)1三角形中運(yùn)用一線三直角進(jìn)行相關(guān)的運(yùn)算 如圖,在Rt△ABC中,∠C=90°,∠AEB=135°,BE=3,DE⊥BE交AB于點(diǎn)D,若DE=,則AE的長(zhǎng)為 .? 思路分析 觀察題圖,有兩個(gè)直角:∠DEB和∠C,有“一條線”:直線AC,過點(diǎn)D作AC的垂線,即可構(gòu)造一線三直角模型,然后配合題中的條件用“相似+勾股”進(jìn)行證明和計(jì)算. 突破點(diǎn)2四邊形中運(yùn)用一線三直角求線段長(zhǎng) 如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC邊的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)的
11、點(diǎn)F處,連接CF,則CF的長(zhǎng)為 .? 思路分析 題圖中的直角有很多,與CF聯(lián)系緊密且易于構(gòu)造一線三直角模型的直角是∠AFE,過直角頂點(diǎn)F用豎直的線(作矩形ABCD的邊AD邊垂線),可構(gòu)造一線三直角模型,再配合題中的條件用“相似+勾股”進(jìn)行相關(guān)計(jì)算. 突破點(diǎn)3一線三直角在二次函數(shù)中的運(yùn)用 拋物線y=x2-4x+3與坐標(biāo)軸交于A,B,C三點(diǎn),點(diǎn)P在拋物線上,PE⊥BC于點(diǎn)E,若PE=2CE,則點(diǎn)P的坐標(biāo)為 .? 思路分析 圖形中與點(diǎn)P相關(guān)的直角頂點(diǎn)是E,可過點(diǎn)E作x軸或y軸的平行線(也可以是平行于x軸或y軸的直線),構(gòu)造一線三直角模型,然后利用相關(guān)知識(shí)進(jìn)行計(jì)算.
12、 1.在四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,若CD的長(zhǎng)為5,則四邊形ABCD的面積為 .? (第1題) (第2題) 2.如圖,已知∠ABC=90°,AD=BC,CE=BD,AE與CD相交于點(diǎn)M,則∠AMD= °.? 3.如圖,在平面直角坐標(biāo)系中,等腰直角三角形OAB的一個(gè)頂點(diǎn)在原點(diǎn)處,∠ABO=90°,OB=AB,已知點(diǎn)A(2,4),則點(diǎn)B的坐標(biāo)為 .? (第3題) (第4題) 4.如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,2),點(diǎn)B(4,0),點(diǎn)C在第一象限內(nèi),若△ABC為等邊三角形,則點(diǎn)C的坐標(biāo)為 .? 5.如圖,在平面
13、直角坐標(biāo)系中,把矩形OABC的頂點(diǎn)O放在原點(diǎn)處,把其邊OA,OC分別放在x軸的正半軸、y軸的正半軸上,點(diǎn)D在OC邊上,把△BDC沿直線BD翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)恰好落在x軸上的點(diǎn)E處,已知B(10,8),則直線BD的解析式為 .? (第5題) (第6題) 6.如圖,在四邊形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,則BD的長(zhǎng)為 .? 7.在四邊形ABCD中,∠ABC=∠BAD=90°,∠ACD=45°,AB=3,AD=4,則BC的長(zhǎng)為 .? (第7題) (第8題) 8.如圖,已知拋物線y=-x2與直線AB交于A(-2,-4),B兩點(diǎn),連接AO
14、,BO,若∠AOB=90°,則點(diǎn)B的坐標(biāo)為 .?
參考答案
高分突破微專項(xiàng)1 全等三角形中的兩大輔助線技巧
例1 證明:如圖,延長(zhǎng)AD至點(diǎn)F,使DF=DA,連接CF.
在△ABD和△FCD中,
∴△ABD≌△FCD,
∴AB=FC,∠B=∠DCF.
∵CE=AB,∠BAC=∠BCA,∠ACE=∠BAC+∠B,
∴CF=CE,∠ACE=∠BCA+∠DCF=∠ACF,
在△ACF和△ACE中,
∴△ACF≌△ACE,
∴AE=AF=2AD.
強(qiáng)化訓(xùn)練
1.1 15、CD,又∵∠ADB=∠CDE,∴△ABD≌△ECD,∴AB=EC,在△AEC中,AC+EC>AE,且EC-AC 16、△ADC和△GDB中,
∴△ADC≌△GDB,
∴∠CAD=∠G,BG=AC.
∵BE=AC,
∴BE=BG,
∴∠BED=∠G,
又∵∠BED=∠AEF,
∴∠AEF=∠CAD,
∴AF=EF.
4.證明:如圖,過點(diǎn)C作CH∥AB,交FE的延長(zhǎng)線于點(diǎn)H,
則∠B=∠ECH,∠BGE=∠H.
∵點(diǎn)E是BC的中點(diǎn),
∴BE=CE.
在△BEG和△CEH中,
∴△BEG≌△CEH,
∴BG=CH,
又∵BG=CF,
∴CH=CF,
∴∠F=∠H.
∵EF∥AD,
∴∠F=∠CAD,∠BGE=∠BAD,
又∵∠BGE=∠H,
∴∠BAD=∠CAD, 17、
∴AD為△ABC的角平分線.
例2 如圖,將△ABC以點(diǎn)C為旋轉(zhuǎn)中心,旋轉(zhuǎn)至△EDC,則△ABC≌△EDC,∴AB=ED,AC=EC,∠ABC=∠EDC.∵四邊形ABCD是☉O的內(nèi)接四邊形,∴∠ABC+∠ADC=180°,∴∠EDC+∠ADC=180°,∴A,D,E三點(diǎn)共線,∴AE=AD+ED=8.∵∠BAD= 60°,點(diǎn)C為的中點(diǎn),∴∠CAE=∠BAD=30°.過點(diǎn)C作CF⊥AE于點(diǎn)F,則AF=AE=4.在Rt△ACF中,cos∠CAF=,即=,解得AC=.
強(qiáng)化訓(xùn)練
5. 如圖,將△ABP以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°,得△ACD,過點(diǎn)A作AE⊥CD交CD的延長(zhǎng)線于點(diǎn) 18、E,連接PD,易得△ABP≌△ACD,AP=AD,BP=CD,∠PAD=∠BAC=60°,∴△ADP為等邊三角形,∴AP=PD.在△CDP中,DP=1,CD=,PC=,∴PD2+CD2=PC2,∴△CDP是直角三角形,且∠CDP=90°,∴∠CDP+∠ADP=150°,∴∠ADE=30°.在Rt△ADE中,AE=AD=,ED=AE=,∴CE=CD+DE=+,AC2=3+,∴S△ABC=×AC2=.
6.45° 如圖,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG的位置,得∠EAG=90°,△ABE≌△ADG,∴BE=DG,AE=AG,又∵BE+DF=EF,∴FG=EF,∴△AEF≌△AGF, 19、∴∠EAF=∠GAF,∴∠EAF=∠EAG=45°.
7.4.51 方法一:如圖(1),將△BEF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°到△GED的位置,易得EG⊥AE,△BEF≌△GED,∴GE=BE=2.2,∴S△BFE+S△AED=S△AEG=AE·EG=×2.2×4.1=4.51.方法二:如圖(2),將△AED繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到△GEF的位置,則EG⊥AE,△AED≌△GEF,∴GE=AE=4.1,∴S△BFE+S△AED=S△GBE=BE·EG=×2.2×4.1=4.51.
圖(1) 圖(2)
8.(1)證明:∵OA=OD,
∴可將△AOB以點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)至△DOG的位置,如圖 20、所示,則△AOB≌△DOG,
∴S△OAB=S△ODG,∠AOB=∠DOG,OB=OG.
∵OA⊥OD,OB=OC,OB⊥OC,
∴∠COD+∠AOB=∠COD+∠DOG=180°,OC=OG,
∴C,O,G三點(diǎn)共線,OD為△CDG中CG邊上的中線,
∴S△ODG=S△OCD,
∴S△OAB=S△OCD.
(2)證明:∵直線l平分CD,
∴CF=DF.
由(1)可知,OC=OG,
∴OF為△CDG的中位線,
∴OF=DG,
由旋轉(zhuǎn)性質(zhì)可得DG=AB,
∴OF=AB.
9.(1)證明:連接DC,
∵點(diǎn)D為等腰直角三角形ABC斜邊AB的中點(diǎn),
∴CD⊥AB,CD 21、=DA,CD平分∠BCA,
∴∠ECD=∠DCA=45°.
∵DM⊥DN,
∴∠EDN=90°,
又∠CDA=90°,
∴∠CDE=∠FDA.
在△CDE和△ADF中,
∴△CDE≌△ADF,
∴DE=DF.
(2)∵△CDE≌△ADF,
∴S△CDE=S△ADF,
∴==CD·AD=.
10.(1)證明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C.
∵將等腰三角形ABC繞頂點(diǎn)B逆時(shí)針旋轉(zhuǎn)α到△A1BC1的位置,
∴A1B=AB=BC,∠A1=∠A=∠C,∠A1BD=∠CBC1.
在△BCF與△BA1D中,
∴△BCF≌△BA1D.
(2)當(dāng) 22、∠C=α?xí)r,四邊形A1BCE是菱形.
理由:由題易得∠A1=∠A.
又∵∠ADE=∠A1DB,
∴∠AED=∠A1BD=α,
∴∠DEC=180°-α.
∵∠C=α,
∴∠A1=α,
∴∠A1BC=360°-∠A1-∠C-∠A1EC=180°-α,
∴∠A1=∠C,∠A1BC=∠A1EC,
∴四邊形A1BCE是平行四邊形,
又∵A1B=BC,
∴四邊形A1BCE是菱形.
高分突破微專項(xiàng)2 一線三直角模型
例1 3 如圖,過點(diǎn)D作DF⊥AC于點(diǎn)F.∵∠AEB=135°,∴∠CEB=45°,∴△CEB是等腰直角三角形.又∵BE=3,∴BC=CE=3.根據(jù)一線三直角模型,可 23、得△EFD∽△BCE,∴∠FED=∠FDE=45°.又DE=,∴EF=DF=1.易證△AFD∽△ACB,∴=.設(shè)AF=a,則=,解得a=2,∴AE=AF+EF=2+1=3.
例2 如圖,過點(diǎn)F作AD的垂線,交AD于點(diǎn)M,交BC于點(diǎn)N,則∠FMA=∠ENF=90°.∵BC=6,點(diǎn)E為BC邊的中點(diǎn),∴BE=BC=3.由折疊的性質(zhì)可知,EF=BE=3,AF=AB=4,∠AFE=∠B=90°.根據(jù)一線三直角模型,可得△AMF∽△FNE,∴===.設(shè)EN=3x,FM=4x,則FN=4-4x,AM=3x+3,∴=,解得x=,∴NC=EC-EN=3-3x,∴FC=5-5x=5-5×=.
例3 24、(,) 方法一:如圖(1),過點(diǎn)E作EF⊥y軸,交y軸于點(diǎn)F,過點(diǎn)P作PG⊥EF,交FE的延長(zhǎng)線于點(diǎn)G.當(dāng)y=0時(shí),x2-4x+3=0,解得x1=1,x2=3,∴A(1,0),B(3,0),∴OA=1,OB=3.當(dāng)x=0時(shí),y=3,∴點(diǎn)C的坐標(biāo)是(0,3).∴OC=3,∴OB=OC,∴△BOC為等腰直角三角形.又∵EF∥OB,∴△EFC是等腰直角三角形.∵∠CFE=∠EGP=∠CEP=90°,∴根據(jù)一線三直角模型,可得△CEF∽△EPG.∵PE=2CE,∴===.設(shè)點(diǎn)E的橫坐標(biāo)為m,易得EG=PG=2m,∴點(diǎn)P的坐標(biāo)為(3m,3+m).把點(diǎn)P的坐標(biāo)代入y=x2-4x+3中,解得m1=,m2=0 25、(不符合題意,舍去),∴點(diǎn)P的坐標(biāo)為(,).方法二:如圖(2),當(dāng)y=0時(shí),x2-4x+3=0,解得x1=1,x2=3,∴A(1,0),B(3,0),∴OA=1,OB=3.當(dāng)x=0時(shí),y=3,∴點(diǎn)C的坐標(biāo)是(0,3).∴OC=3,∴OB=OC,∴△BOC為等腰直角三角形.過點(diǎn)B作BF⊥BC,交CP的延長(zhǎng)線于點(diǎn)F,過點(diǎn)F作FH⊥x軸于點(diǎn)H,∵PE⊥BC,∴EP∥BF,∴△CEP∽△CBF.∵PE=2CE,==.由一線三直角模型可得△BOC∽△FHB,∴BH=FH=2AB=6,∴點(diǎn)F的坐標(biāo)為(9,6).易求出直線CF的解析式為y=x+3.令x2-4x+3=x+3,解得x1=0(舍去),x2=,把x 26、=代入到y(tǒng)=x+3,得點(diǎn)P的坐標(biāo)為(,).
圖(1) 圖(2)
強(qiáng)化訓(xùn)練
1.10 如圖,過點(diǎn)D作DE⊥AC,交AC于點(diǎn)E.∵∠BAD=∠ACB=90°,AB=AD,∴根據(jù)一線三直角模型,可得△ABC≌△DAE,∴AE=BC,AC=DE.設(shè)BC=AE=a,則CE=3a.在Rt△CDE中,CE2+DE2=CD2,即(3a)2+(4a)2=52,解得a=1(負(fù)值已舍去),∴DE=AC=4a=4,∴S四邊形ABCD=S△ABC+S△ACD=BC·AC+AC·DE=×1×4+×4×4=10.
2.45 如圖,過點(diǎn)A作AN⊥AB,且AN=BD,連接DN,CN.∵AD=BC,∴△DAN≌△ 27、CBD,∴∠AND=∠CDB,DN=DC.又∵∠AND+∠NDA=90°,∴∠CDB+∠NDA=90°,∴∠NDC=90°,∴△CDN是等腰直角三角形,∴∠NCD=45°.∵AN=DB,CE=BD,∴AN=CE.又∵AN∥CE,∴四邊形ANCE是平行四邊形,∴CN∥AE,∴∠AMD=∠NCD=45°.
3.(3,1) 如圖,過點(diǎn)B作x軸的垂線,垂足為F,過點(diǎn)A作y軸的垂線,垂足為E,兩線交于點(diǎn)D,則∠ADB=∠BFO=90°.∵∠ABO=90°,AB=OB,∴根據(jù)一線三直角模型,可得△ABD≌△BOF,∴AD=BF,BD=OF.設(shè)AD=BF=a,BD=OF=b.∵A(2,4),∴AE=2,D 28、F=4,∴解得a=1,b=3.∴OF=3,BF=1,故點(diǎn)B的坐標(biāo)為(3,1).
4.(5,3) 如圖,過點(diǎn)C作CD⊥AB于點(diǎn)D,過點(diǎn)D作y軸的垂線,垂足為E,過點(diǎn)C作CF⊥ED,交ED的延長(zhǎng)線于點(diǎn)F.∵點(diǎn)A(0,2),點(diǎn)B(4,0),∴OA=2,OB=4.∵△ABC為等邊三角形,∴CD=AD.易知DE為△AOB的中位線,∴DE=OB=2,AE=OA=.根據(jù)一線三直角模型,可得△ADE∽△DCF,∴===,解得DF=3,CF=2,∴EF=DE+DF=5,CF+OE=3,∴點(diǎn)C的坐標(biāo)為(5,3).
5.y=x+3 在矩形OABC中,∵B(10,8),∴OC=AB=8,OA=BC=10. 29、由折疊的性質(zhì)可知DE=CD,BE=BC=10.在Rt△ABE中,AE==6,∴OE=OA-AE=10-6=4.根據(jù)一線三直角模型可知,△DOE∽△EAB,∴=,即=,解得OD=3,∴點(diǎn)D的坐標(biāo)為(0,3).設(shè)直線BD的解析式為y=ax+3,將B(10,8)代入,解得a=,故直線BD的解析式為y=x+3.
6. 如圖,過點(diǎn)C作CF⊥AD于點(diǎn)F,過點(diǎn)B作BE⊥AD,交DA的延長(zhǎng)線于點(diǎn)E.在Rt△CDF中,∵∠ADC=45°,∴CD=DF=CF,∴CF=DF=,AF=AD-DF=4-.∵∠CFA=∠CAB=∠AEB=90°,AC=AB,∴根據(jù)一線三直角模型,可得△ACF≌△BAE,∴AE=CF=, 30、BE=AF=4-,∴DE=AD+AE=4+.在Rt△BDE中,BD==.
7.2+ 方法一:如圖(1),過點(diǎn)D作DE⊥AC于點(diǎn)E,過點(diǎn)E作AB的平行線,分別交BC,AD于點(diǎn)G,H,則四邊形ABGH是矩形.∵∠ACD=45°,∴△DCE為等腰直角三角形,∴DE=CE.∵∠DHE=∠EGC=∠DEC=90°,∴根據(jù)一線三直角模型,可得△DEH≌△ECG,∴EH=CG,DH=EG.設(shè)DH=EG=m, 則CG=EH=3-m,AH=4-m,BC=CG+AH=7-2m.易知△CEG∽△CAB,∴=,即=,解得m1=(不合題意,舍去),m2=,∴BC=7-2m=2+.方法二:如圖(2),過點(diǎn)A作AE⊥ 31、AC與CD的延長(zhǎng)線交于點(diǎn)E,過點(diǎn)E作EF⊥AB,交BA的延長(zhǎng)線于點(diǎn)F.∵∠ACD=45°,則△ACE為等腰直角三角形,∴AC=AE.∵∠EAC=∠EFA=∠ABC=90°,∴根據(jù)一線三直角模型,可得△AEF≌△CAB.∴AF=BC,EF=BA=3.設(shè)AF=BC=a,過點(diǎn)E作EH⊥BC于點(diǎn)H,則四邊形EFBH為矩形,∴EH=BF=a+3,CH=BC-BH=BC-EF=a-3,DG=AD-AG=4-EF=1.∵∠ABC=∠BAD=90°,∴DG∥CH,∴△EGD∽△EHC,∴=,即=,解得a1=2+,a2=2-(不合題意,舍去).故BC的長(zhǎng)為2+.
圖(1) 圖(2)
8.(1,-) 如圖,分別過A,B兩點(diǎn)作AD⊥x軸于點(diǎn)D,BC⊥x軸于點(diǎn)C.∵∠ADO=∠OCB=∠AOB=90°,∴根據(jù)一線三直角模型,可得△AOD∽△OBC,∴=.∵A(-2,-4),∴OD=2,AD=4,∴==,∴OC=2BC.設(shè)BC=a,則OC=2a,∴點(diǎn)B的坐標(biāo)為(2a,-a),代入y=-x2,得-a=-×(2a)2,解得a1=,a2=0(不符合題意,舍去),故點(diǎn)B的坐標(biāo)為(1,-).
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識(shí)競(jìng)賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識(shí)測(cè)試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測(cè)工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識(shí)競(jìng)賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案