(浙江專版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 第5節(jié) 直接證明與間接證明(供選用)學(xué)案 理
《(浙江專版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 第5節(jié) 直接證明與間接證明(供選用)學(xué)案 理》由會員分享,可在線閱讀,更多相關(guān)《(浙江專版)2019版高考數(shù)學(xué)大一輪復(fù)習(xí) 第七章 數(shù)列與數(shù)學(xué)歸納法 第5節(jié) 直接證明與間接證明(供選用)學(xué)案 理(12頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、 第5節(jié) 直接證明與間接證明(供選用) 最新考綱 1.了解直接證明的兩種基本方法——分析法和綜合法;了解分析法和綜合法的思考過程和特點(diǎn);2.了解間接證明的一種基本方法——反證法;了解反證法的思考過程和特點(diǎn). 知 識 梳 理 1.直接證明 內(nèi)容 綜合法 分析法 定義 利用已知條件和某些數(shù)學(xué)定義、公理、定理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立 從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直到最后把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止 實(shí)質(zhì) 由因?qū)Ч? 執(zhí)果索因 框圖表示 →→…→ →→…→ 文字語言
2、 因?yàn)椤浴? 或由……得…… 要證……只需證…… 即證…… 2.間接證明 間接證明是不同于直接證明的又一類證明方法,反證法是一種常用的間接證明方法. (1)反證法的定義:假設(shè)原命題不成立(即在原命題的條件下,結(jié)論不成立),經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯(cuò)誤,從而證明原命題成立的證明方法. (2)用反證法證明的一般步驟:①反設(shè)——假設(shè)命題的結(jié)論不成立;②歸謬——根據(jù)假設(shè)進(jìn)行推理,直到推出矛盾為止;③結(jié)論——斷言假設(shè)不成立,從而肯定原命題的結(jié)論成立. [常用結(jié)論與微點(diǎn)提醒] 分析法與綜合法相輔相成,對較復(fù)雜的問題,常常先從結(jié)論進(jìn)行分析,尋求結(jié)論與條件、基礎(chǔ)知識之
3、間的關(guān)系,找到解決問題的思路,再運(yùn)用綜合法證明,或者在證明時(shí)將兩種方法交叉使用. 診 斷 自 測 1.思考辨析(在括號內(nèi)打“√”或“×”) (1)分析法是從要證明的結(jié)論出發(fā),逐步尋找使結(jié)論成立的充要條件.( ) (2)用反證法證明結(jié)論“a>b”時(shí),應(yīng)假設(shè)“a
4、3)× (4)√ 2.要證a2+b2-1-a2b2≤0,只要證明( ) A.2ab-1-a2b2≤0 B.a(chǎn)2+b2-1-≤0 C.-1-a2b2≤0 D.(a2-1)(b2-1)≥0 解析 a2+b2-1-a2b2≤0?(a2-1)(b2-1)≥0. 答案 D 3.若a,b,c為實(shí)數(shù),且aab>b2 C.< D.> 解析 a2-ab=a(a-b),∵a0,∴a2>ab.① 又ab-b2=b(a-b)>0,∴ab>b2,② 由①②得a2>ab
5、>b2. 答案 B 4.用反證法證明命題:“設(shè)a,b為實(shí)數(shù),則方程x3+ax+b=0至少有一個(gè)實(shí)根”時(shí),要做的假設(shè)是( ) A.方程x3+ax+b=0沒有實(shí)根 B.方程x3+ax+b=0至多有一個(gè)實(shí)根 C.方程x3+ax+b=0至多有兩個(gè)實(shí)根 D.方程x3+ax+b=0恰好有兩個(gè)實(shí)根 解析 因?yàn)椤胺匠蘹3+ax+b=0至少有一個(gè)實(shí)根”等價(jià)于“方程x3+ax+b=0的實(shí)根的個(gè)數(shù)大于或等于1”,所以要做的假設(shè)是“方程x3+ax+b=0沒有實(shí)根”. 答案 A 5.在△ABC中,三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,且A,B,C成等差數(shù)列,a,b,c成等比數(shù)列,則△ABC的形狀
6、為________. 解析 由題意2B=A+C,又A+B+C=π,∴B=,又b2=ac,由余弦定理得b2=a2+c2-2accos B=a2+c2-ac, ∴a2+c2-2ac=0,即(a-c)2=0,∴a=c, ∴A=C,∴A=B=C=,∴△ABC為等邊三角形. 答案 等邊三角形 6.(2017·紹興檢測)完成反證法證題的全過程.設(shè)a1,a2,…,a7是1,2,…,7的一個(gè)排列,求證:乘積p=(a1-1)·(a2-2)·…·(a7-7)為偶數(shù). 證明:假設(shè)p為奇數(shù),則a1-1,a2-2,…,a7-7均為奇數(shù).因奇數(shù)個(gè)奇數(shù)之和為奇數(shù),故有奇數(shù)=____________=______
7、______=0.但0≠奇數(shù),這一矛盾說明p為偶數(shù). 解析 ∵a1-1,a2-2,…,a7-7均為奇數(shù),∴(a1-1)+(a2-2)+…+(a7-7)也為奇數(shù),即(a1+a2+…+a7)-(1+2+…+7)為奇數(shù).又∵a1,a2,…,a7是1,2,…,7的一個(gè)排列,∴a1+a2+…+a7=1+2+…+7,故上式為0,∴奇數(shù)=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0. 答案 (a1-1)+(a2-2)+…+(a7-7) (a1+a2+…+a7)-(1+2+…+7) 考點(diǎn)一 綜合法的應(yīng)用 【例1】 已知a,b,c>0,a+b+c=1
8、.求證: (1)++≤; (2)++≥. 證明 (1)∵(++)2=(a+b+c)+2+2+2≤(a+b+c)+(a+b)+(b+c)+(c+a)=3, ∴++≤. (2)∵a>0,∴3a+1>0, ∴+(3a+1)≥2=4, ∴≥3-3a,同理得≥3-3b,≥3-3c, 以上三式相加得 4≥9-3(a+b+c)=6, ∴++≥. 規(guī)律方法 用綜合法證題是從已知條件出發(fā),逐步推向結(jié)論,綜合法的適用范圍: (1)定義明確的問題,如證明函數(shù)的單調(diào)性、奇偶性、求證無條件的等式或不等式; (2)已知條件明確,并且容易通過分析和應(yīng)用條件逐步逼近結(jié)論的題型.在使用綜合法證明時(shí),易
9、出現(xiàn)的錯(cuò)誤是因果關(guān)系不明確,邏輯表達(dá)混亂. 【訓(xùn)練1】 設(shè)a,b,c均為正數(shù),且a+b+c=1,證明: (1)ab+bc+ac≤; (2)++≥1. 證明 (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac得 a2+b2+c2≥ab+bc+ca.由題設(shè)知(a+b+c)2=1, 即a2+b2+c2+2ab+2bc+2ca=1. 所以3(ab+bc+ca)≤1,即ab+bc+ca≤. (2)因?yàn)閍>0,b>0,c>0, 所以+b≥2a,+c≥2b,+a≥2c, 故+++(a+b+c)≥2(a+b+c), 即++≥a+b+c.所以++≥1. 考點(diǎn)二 分析法的應(yīng)
10、用 【例2】 已知a>0,證明:-≥a+-2. 證明 要證-≥a+-2, 只需證≥-(2-). 因?yàn)閍>0,所以-(2-)>0, 所以只需證≥, 即2(2-)≥8-4,只需證a+≥2. 因?yàn)閍>0,a+≥2顯然成立,所以要證的不等式成立. 規(guī)律方法 (1)逆向思考是用分析法證題的主要思想,通過反推,逐步尋找使結(jié)論成立的充分條件.正確把握轉(zhuǎn)化方向是使問題順利獲解的關(guān)鍵. (2)證明較復(fù)雜的問題時(shí),可以采用兩頭湊的辦法,即通過分析法找出某個(gè)與結(jié)論等價(jià)(或充分)的中間結(jié)論,然后通過綜合法證明這個(gè)中間結(jié)論,從而使原命題得證. 【訓(xùn)練2】 △ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,A,
11、B,C的對邊分別為a,b,c. 求證:+=. 證明 要證+=, 即證+=3也就是+=1, 只需證c(b+c)+a(a+b)=(a+b)(b+c), 需證c2+a2=ac+b2, 又△ABC三內(nèi)角A,B,C成等差數(shù)列,故B=60°, 由余弦定理,得b2=c2+a2-2accos 60°,即b2=c2+a2-ac, 故c2+a2=ac+b2成立. 于是原等式成立. 考點(diǎn)三 反證法的應(yīng)用 【例3】 等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1+,S3=9+3. (1)求數(shù)列{an}的通項(xiàng)an與前n項(xiàng)和Sn; (2)設(shè)bn=(n∈N*),求證:數(shù)列{bn}中任意不同的三項(xiàng)都不可
12、能成為等比數(shù)列. (1)解 由已知得解得d=2, 故an=2n-1+,Sn=n(n+). (2)證明 由(1)得bn==n+.假設(shè)數(shù)列{bn}中存在三項(xiàng)bp,bq,br(p,q,r∈N*,且互不相等)成等比數(shù)列,則b=bpbr.即(q+)2=(p+)(r+). ∴(q2-pr)+(2q-p-r)=0. ∵p,q,r∈N*,∴ ∴=pr,(p-r)2=0. ∴p=r,與p≠r矛盾. ∴數(shù)列{bn}中任意不同的三項(xiàng)都不可能成為等比數(shù)列. 規(guī)律方法 (1)當(dāng)一個(gè)命題的結(jié)論是以“至多”、“至少”、“唯一”或以否定形式出現(xiàn)時(shí),可用反證法來證,反證法關(guān)鍵是在正確的推理下得出矛盾,矛盾可以
13、是與已知條件矛盾,與假設(shè)矛盾,與定義、公理、定理矛盾,與事實(shí)矛盾等. (2)用反證法證明不等式要把握三點(diǎn):①必須否定結(jié)論;②必須從否定結(jié)論進(jìn)行推理;③推導(dǎo)出的矛盾必須是明顯的. 【訓(xùn)練3】 (2017·鄭州一中月考)已知a1+a2+a3+a4>100,求證:a1,a2,a3,a4中至少有一個(gè)數(shù)大于25. 證明 假設(shè)a1,a2,a3,a4均不大于25,即a1≤25,a2≤25,a3≤25,a4≤25,則a1+a2+a3+a4≤25+25+25+25=100, 這與已知a1+a2+a3+a4>100矛盾,故假設(shè)錯(cuò)誤. 所以a1,a2,a3,a4中至少有一個(gè)數(shù)大于25. 基礎(chǔ)鞏固題組
14、 一、選擇題 1.用反證法證明命題:“三角形三個(gè)內(nèi)角至少有一個(gè)不大于60°”時(shí),應(yīng)假設(shè)( ) A.三個(gè)內(nèi)角都不大于60° B.三個(gè)內(nèi)角都大于60° C.三個(gè)內(nèi)角至多有一個(gè)大于60° D.三個(gè)內(nèi)角至多有兩個(gè)大于60° 答案 B 2.若a,b∈R,則下面四個(gè)式子中恒成立的是( ) A.lg(1+a2)>0 B.a(chǎn)2+b2≥2(a-b-1) C.a(chǎn)2+3ab>2b2 D.< 解析 在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0, ∴a2+b2≥2(a-b-1)恒成立. 答案 B 3.已知m>1,a
15、=-,b=-,則以下結(jié)論正確的是( )
A.a(chǎn)>b B.a(chǎn)+>0(m>1),
∴<,即a 16、+c)>0?(a-c)(a-b)>0.
答案 C
5.①已知p3+q3=2,求證p+q≤2,用反證法證明時(shí),可假設(shè)p+q≥2;②已知a,b∈R,|a|+|b|<1,求證方程x2+ax+b=0的兩根的絕對值都小于1,用反證法證明時(shí)可假設(shè)方程有一根x1的絕對值大于或等于1,即假設(shè)|x1|≥1.以下正確的是( )
A.①與②的假設(shè)都錯(cuò)誤
B.①與②的假設(shè)都正確
C.①的假設(shè)正確;②的假設(shè)錯(cuò)誤
D.①的假設(shè)錯(cuò)誤;②的假設(shè)正確
解析 反證法的實(shí)質(zhì)是否定結(jié)論,對于①,其結(jié)論的反面是p+q>2,所以①不正確;對于②,其假設(shè)正確.
答案 D
6.(2018·杭州一模)記Sn是各項(xiàng)均為正數(shù)的 17、等差數(shù)列{an}的前n項(xiàng)和,若a1≥1,則( )
A.S2mS2n≥S,ln S2mln S2n≤ln2Sm+n
B.S2mS2n≤S,ln S2mln S2n≤ln2Sm+n
C.S2mS2n≥S,ln S2mln S2n≥ln2Sm+n
D.S2mS2n≤S,ln S2mln S2n≥ln2Sm+n
解析 由Sn是各項(xiàng)均為正數(shù)的等差數(shù)列{an}的前n項(xiàng)和,可采用取特殊數(shù)列方法驗(yàn)證排除,如:數(shù)列1,2,3,4,5,6,…,取m=1,n=1,則S2m=S2=3,S2n=S4=10,Sm+n=S3=6,∴S2mS2n=S2S4=30<36=S=S,排除A,C;又ln S2mln S2 18、n=ln 3·ln 10<ln26=ln2Sm+n,排除D.
答案 B
二、填空題
7.+與2+的大小關(guān)系為________.
解析 要比較+與2+的大小,
只需比較(+)2與(2+)2的大小,
只需比較6+7+2與8+5+4的大小,
只需比較與2的大小,只需比較42與40的大小,
∵42>40,∴+>2+.
答案?。?2+
8.用反證法證明命題“a,b∈R,ab可以被5整除,那么a,b中至少有一個(gè)能被5整除”,那么假設(shè)的內(nèi)容是______________.
解析 “至少有一個(gè)能”的反面是“都不能”.
答案 a,b都不能被5整除
9.下列條件:①ab>0,②ab<0, 19、③a>0,b>0,④a<0,b<0,其中能使+≥2成立的條件的序號是________.
解析 要使+≥2,只需>0成立,即a,b不為0且同號即可,故①③④能使+≥2成立.
答案?、佗邰?
10.給出如下四個(gè)命題:①e>2;②ln 2>;③π2<3π;④<,正確的命題是________(只填序號).
解析 要證e>2,只要證>ln 2,即2>eln 2,
設(shè)f(x)=eln x-x,x>0,∴f′(x)=-1=,
當(dāng)0<x<e時(shí),f′(x)>0,函數(shù)單調(diào)遞增,
當(dāng)x>e時(shí),f′(x)<0,函數(shù)單調(diào)遞減,
∴f(x)<f(e)=eln e-e=0,∴f(2)=eln 2-2<0,
20、即2>eln 2,∴e>2,因此①正確;
∵3ln 2=ln 8>ln 2.82>ln e2=2.
∴l(xiāng)n 2>,因此②正確;
π2<42=16,3π>33=27,因此π2<3π,③正確;
∵2π<π2,∴<,④正確;
正確的命題是①②③④.
答案 ①②③④
三、解答題
11.若a,b,c是不全相等的正數(shù),求證:
lg+lg+lg>lg a+lg b+lg c.
證明 ∵a,b,c∈(0,+∞),
∴≥>0,≥>0,≥>0.
又上述三個(gè)不等式中等號不能同時(shí)成立.
∴··>abc成立.
上式兩邊同時(shí)取常用對數(shù),
得lg>lg abc,
∴l(xiāng)g+lg+lg>lg a 21、+lg b+lg c.
12.設(shè)數(shù)列{an}是公比為q的等比數(shù)列,Sn是它的前n項(xiàng)和.
(1)求證:數(shù)列{Sn}不是等比數(shù)列;
(2)數(shù)列{Sn}是等差數(shù)列嗎?為什么?
(1)證明 假設(shè)數(shù)列{Sn}是等比數(shù)列,則S=S1S3,
即a(1+q)2=a1·a1·(1+q+q2),
因?yàn)閍1≠0,所以(1+q)2=1+q+q2,
即q=0,這與公比q≠0矛盾,
所以數(shù)列{Sn}不是等比數(shù)列.
(2)解 當(dāng)q=1時(shí),Sn=na1,故{Sn}是等差數(shù)列;
當(dāng)q≠1時(shí),{Sn}不是等差數(shù)列,
否則2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),
得q=0,這與公 22、比q≠0矛盾.
綜上,當(dāng)q=1時(shí),數(shù)列{Sn}是等差數(shù)列;當(dāng)q≠1時(shí),數(shù)列{Sn}不是等差數(shù)列.
能力提升題組
13.已知函數(shù)f(x)=,a,b是正實(shí)數(shù),A=f,B=f(),C=f,則A,B,C的大小關(guān)系為( )
A.A≤B≤C B.A≤C≤B
C.B≤C≤A D.C≤B≤A
解析 ∵≥≥,又f(x)=在R上是減函數(shù),∴f≤f()≤f.
答案 A
14.設(shè)a,b,c均為正實(shí)數(shù),則三個(gè)數(shù)a+,b+,c+( )
A.都大于2 B.都小于2
C.至少有一個(gè)不大于2 D.至少有一個(gè)不小于2
解析 ∵a>0,b>0,c>0,
∴++=++
≥6,當(dāng)且僅 23、當(dāng)a=b=c=1時(shí),“=”成立,故三者不能都小于2,即至少有一個(gè)不小于2.
答案 D
15.如果a+b>a+b,則a,b應(yīng)滿足的條件是________.
解析 ∵a+b-(a+b)
=(a-b)+(b-a)
=(-)(a-b)
=(-)2(+).
∴當(dāng)a≥0,b≥0且a≠b時(shí),(-)2(+)>0.
∴a+b>a+b成立的條件是a≥0,b≥0且a≠b.
答案 a≥0,b≥0且a≠b
16.設(shè)x≥1,y≥1,證明x+y+≤++xy.
證明 由于x≥1,y≥1,
所以要證明x+y+≤++xy,
只需證xy(x+y)+1≤y+x+(xy)2.
將上式中的右式減左式,得
[ 24、y+x+(xy)2]-[xy(x+y)+1]
=[(xy)2-1]-[xy(x+y)-(x+y)]
=(xy+1)(xy-1)-(x+y)(xy-1)
=(xy-1)(xy-x-y+1)
=(xy-1)(x-1)(y-1).
因?yàn)閤≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,
從而所要證明的不等式成立.
17.(2016·浙江卷)設(shè)函數(shù)f(x)=x3+,x∈[0,1],證明:
(1)f(x)≥1-x+x2;
(2)<f(x)≤.
證明 (1)因?yàn)?-x+x2-x3==,
由于x∈[0,1],有≤,
即1-x+x2-x3≤,
所以f(x)≥1-x+x2.
(2)由0≤x≤1得x3≤x,故f(x)=x3+≤x+=x+-+=+≤,
所以f(x)≤.
由(1)得f(x)≥1-x+x2=+≥,
又因?yàn)閒=>,
所以f(x)>.
綜上,<f(x)≤.
12
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓(xùn)考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習(xí)題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習(xí)題含答案
- 2煤礦爆破工考試復(fù)習(xí)題含答案
- 1 各種煤礦安全考試試題含答案