(江蘇專版)2019版高考數(shù)學大一輪復(fù)習 第六章 數(shù)列 第32講 數(shù)列的概念學案 理
《(江蘇專版)2019版高考數(shù)學大一輪復(fù)習 第六章 數(shù)列 第32講 數(shù)列的概念學案 理》由會員分享,可在線閱讀,更多相關(guān)《(江蘇專版)2019版高考數(shù)學大一輪復(fù)習 第六章 數(shù)列 第32講 數(shù)列的概念學案 理(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、 第32講 數(shù)列的概念 考試要求 1.數(shù)列的概念及數(shù)列與函數(shù)的關(guān)系(A級要求);2.數(shù)列的幾種簡單表示方法(列表、圖象、通項公式)(A級要求). 診 斷 自 測 1.思考辨析(在括號內(nèi)打“√”或“×”) (1)所有數(shù)列的第n項都能使用公式表達.( ) (2)根據(jù)數(shù)列的前幾項歸納出數(shù)列的通項公式可能不止一個.( ) (3)1,1,1,1…,不能構(gòu)成一個數(shù)列.( ) (4)任何一個數(shù)列不是遞增數(shù)列,就是遞減數(shù)列.( ) (5)如果數(shù)列{an}的前n項和為Sn,則對?n∈N*,都有an+1=Sn+1-Sn.( ) 答案 (1)× (2)√ (3)× (4)× (5)
2、√ 2.(教材改編)數(shù)列1,2,,,,…中的第26項為________. 解析 ∵a1=1=,a2=2=, a3=,a4=,a5=, ∴an=, ∴a26===2. 答案 2 3.(必修5P34習題7改編)下列四個圖形中,著色三角形的個數(shù)依次構(gòu)成一個數(shù)列的前4項,則這個數(shù)列的一個通項公式為________. 解析 由圖可知前4個圖中著色三角形的個數(shù)分別為1,3,32,33,…,猜想第n個圖的著色三角形的個數(shù)為3n-1,所以這個數(shù)列的通項公式為an=3n-1. 答案 an=3n-1 4.(教材改編)已知數(shù)列{an}中,a1=,an+1=1-(n≥2),則a16=_____
3、___. 解析 由題意知a2=1-=-1,a3=1-=2,a4=1-=,∴此數(shù)列是以3為周期的周期數(shù)列,a16=a3×5+1=a1=. 答案 5.已知數(shù)列{an}的前n項和Sn=n2+1,則an=________. 解析 當n=1時,a1=S1=2,當n≥2時, an=Sn-Sn-1=n2+1-[(n-1)2+1]=2n-1, 故an= 答案 知 識 梳 理 1.數(shù)列的定義 按照一定次序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項. 2.數(shù)列的分類 分類原則 類型 滿足條件 按項數(shù)分類 有窮數(shù)列 項數(shù)有限 無窮數(shù)列 項數(shù)無限 按項與項間的大
4、小關(guān)系分類 遞增數(shù)列 an+1>an 其中n∈N* 遞減數(shù)列 an+1<an 常數(shù)列 an+1=an 擺動數(shù)列 從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列 3.數(shù)列的表示法 數(shù)列有三種表示法,它們分別是列表法、圖象法和解析法. 4.數(shù)列的通項公式 如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式. 5.若數(shù)列{an}的前n項和為Sn,通項公式為an, 則an= 6.在數(shù)列{an}中,①若an最大,則 ②若an最小,則這是求數(shù)列{an}中最大(小)項的一種重要方法. 7.數(shù)列與函數(shù)的關(guān)系 數(shù)
5、列是一種特殊的函數(shù),即數(shù)列是一個定義在非零自然數(shù)集或其子集上的函數(shù),當自變量依次從小到大取值時所對應(yīng)的一列函數(shù)值,就是數(shù)列. 考點一 數(shù)列的通項 【例1】 (1)(2018·南京模擬)數(shù)列1,3,6,10,…的通項公式是______________. (2)數(shù)列{an}的前4項是,1,,,則這個數(shù)列的通項公式是an=________. (3)根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式. ①-1,7,-13,19,…; ②1,0,,0,,0,,…; ③0.9,0.99,0.999,0.999 9,…. 解析 (1)觀察數(shù)列1,3,6,10,…可以發(fā)現(xiàn) 1=1, 3=1
6、+2, 6=1+2+3, 10=1+2+3+4, … 第n項為1+2+3+4+…+n=. ∴an=. (2)數(shù)列{an}的前4項可變形為,,,,故an=. 答案 (1)an= (2) (3)解?、贁?shù)列中各項的符號可通過(-1)n表示,從第2項起,每一項的絕對值總比它的前一項的絕對值大6,故通項公式為an=(-1)n(6n-5). ②分母依次為1,2,3,4,5,6,7,…,分子依次為1,0,1,0,1,0,1,…,把數(shù)列改寫成,,,,,,,…,因此數(shù)列的一個通項公式為an=. ③數(shù)列可改寫成1-,1-,1-,1-,…,可得該數(shù)列的一個通項公式為an=1-. 規(guī)律方法 由前
7、幾項歸納數(shù)列通項的常用方法及具體策略 (1)常用方法:觀察(觀察規(guī)律)、比較(比較已知數(shù)列)、歸納、轉(zhuǎn)化(轉(zhuǎn)化為特殊數(shù)列)、聯(lián)想(聯(lián)想常見的數(shù)列)等方法. (2)具體策略:①分式中分子、分母的特征;②相鄰項的變化特征;③拆項后的特征;④各項的符號特征和絕對值特征;⑤化異為同,對于分式還可以考慮對分子、分母各個擊破,或?qū)ふ曳肿?、分母之間的關(guān)系;⑥對于符號交替出現(xiàn)的情況,可用(-1)k或(-1)k+1,k∈N*處理. 【訓練1】 根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式. (1)0.8,0.88,0.888,…; (2),,-,,-,,…. (3)-,,-,,… 解 (1)數(shù)
8、列變?yōu)?,,,…? 故an=. (2)各項的分母分別為21,22,23,24,…,易看出第2,3,4項的絕對值的分子分別比分母小3. 因此把第1項變?yōu)椋? 原數(shù)列化為-,,-,,…, 故an=(-1)n. (3)首先考查數(shù)列各項的絕對值,,,,…,分子依次是12,22,32,42,…,而分母中后一個因數(shù)比前一個因數(shù)大2,而前一個因數(shù)依次為2,5,8,11,…,構(gòu)成一個等差數(shù)列,其第n項為3n-1,故可得通項公式為an= (-1)n·. 考點二 由an與Sn的關(guān)系求通項公式 【例2】 已知下列數(shù)列{an}的前n項和Sn,求{an}的通項公式. (1)a1=1,Sn=an;(2)
9、Sn=3n+b;(3)Sn=an+. 解 (1)由題設(shè)知a1=1. 當n≥2時,有an=Sn-Sn-1=an-an-1, 整理得an=an-1. 于是 a1=1, a2=a1, a3=a2, …… an-1=an-2, an=an-1. 將以上n個等式兩端分別相乘, 整理得an=. 顯然,當n=1時也滿足上式. 綜上可知,{an}的通項公式an=. (2)a1=S1=3+b, 當n≥2時,an=Sn-Sn-1=(3n+b)-(3n-1+b) =2·3n-1. 當b=-1時,a1適合此等式; 當b≠-1時,a1不適合此等式. ∴當b=-1時,an=2·3n
10、-1; 當b≠-1時,an= (3)由Sn=an+,得當n≥2時,Sn-1=an-1+, 兩式相減,得an=an-an-1, ∴當n≥2時,an=-2an-1,即=-2. 又n=1時,S1=a1=a1+,a1=1, ∴an=(-2)n-1. 規(guī)律方法 已知Sn,求an的步驟 (1)當n=1時,a1=S1; (2)當n≥2時,an=Sn-Sn-1;(3)對n=1時的情況進行檢驗,若適合n≥2的通項則可以合并;若不適合則寫成分段函數(shù)形式.這種轉(zhuǎn)化是遇到這種題型的基本思路,要重點掌握. 【訓練2】 (1)已知數(shù)列{an}的前n項和Sn=2n-3,則數(shù)列{an}的通項公式為____
11、____. (2)已知數(shù)列{an}滿足a1+2a2+…+nan=4-(n∈N*). ①求a3的值; ②求數(shù)列{an}前n項和Tn. (1)解析 當n=1時,a1=S1=-1; 當n≥2時,an=Sn-Sn-1=2n-1, ∴an= 答案 an= (2)解?、儆深}意得3a3=(a1+2a2+3a3)-(a1+2a2)=4--=,所以a3=. ②由題設(shè)得當n≥2時,nan=(a1+2a2+…+nan)-[a1+2a2+…+(n-1)an-1]=4--=,所以an=,又a1=4-=1也適合此式,所以an=. 所以數(shù)列{an}是首項為1、公比為的等比數(shù)列,故Tn==2-. 考點三
12、 由數(shù)列的遞推關(guān)系求通項公式 【例3】 在數(shù)列{an}中, (1)若a1=2,an+1=an+n+1,則通項公式an=________. (2)(一題多解)在數(shù)列{an}中,若a1=1,an=an-1(n≥2),則通項公式an=________. (3)an+1=2an+3,a1=1,則通項公式an=________. 解析 (1)由題意得,當n≥2時,an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=2+(2+3+…+n)=2+=+1. 又a1=2=+1,符合上式,因此an=+1. (2)法一 因為an=an-1(n≥2), 所以an-1=·an-2,…,a
13、2=a1, 以上(n-1)個式子的等號兩端分別相乘得an=a1···…·==. 法二 因為an=···…···a1=···…·1=. (3)設(shè)遞推公式an+1=2an+3可以轉(zhuǎn)化為an+1+t=2(an+t),即an+1=2an+t,解得t=3. 故an+1+3=2(an+3). 令bn=an+3,則b1=a1+3=4, 且==2. 所以{bn}是以4為首項,2為公比的等比數(shù)列. ∴bn=4·2n-1=2n+1, ∴an=2n+1-3. 答案 (1)+1 (2) (3)2n+1-3 規(guī)律方法 (1)形如an+1=an+f(n)的遞推關(guān)系式利用累加法求和,特別注意能消去多少
14、項,保留多少項. (2)形如an+1=an·f(n)的遞推關(guān)系式可化為=f(n)的形式,可用累乘法,也可用an=··…··a1代入求出通項. (3)形如an+1=pan+q的遞推關(guān)系式可以化為(an+1+x)=p(an+x)的形式,構(gòu)成新的等比數(shù)列,求出通項公式,求變量x是關(guān)鍵. 【訓練3】 (1)已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*),則數(shù)列{an}的通項公式an=________. (2)在數(shù)列{an}中,a1=3,an+1=an+,則通項公式an=________. 解析 (1)由an+2+2an-3an+1=0, 得an+2-an+
15、1=2(an+1-an), ∴數(shù)列{an+1-an}是以a2-a1=3為首項,2為公比的等比數(shù)列,∴an+1-an=3×2n-1, ∴n≥2時,an-an-1=3×2n-2,…,a3-a2=3×2,a2-a1=3, 將以上各式累加得 an-a1=3×2n-2+…+3×2+3=3(2n-1-1), ∴an=3×2n-1-2(當n=1時,也滿足). (2)原遞推公式可化為an+1=an+-, 則a2=a1+-,a3=a2+-, a4=a3+-,…,an-1=an-2+-, an=an-1+-, 逐項相加得,an=a1+1-,故an=4-. 答案 (1)3×2n-1-2 (2)
16、4- 考點四 數(shù)列的性質(zhì) 【例4】 (1)數(shù)列{an}滿足an+1=,a8=2,則a1=__________. (2)已知an=,那么數(shù)列{an}是________數(shù)列(填“遞減”“遞增”或“?!?. (3)在數(shù)列{an}中,a1=1,anan+1=(n∈N*). ①求證:數(shù)列{a2n}與{a2n-1}(n∈N*)都是等比數(shù)列; ②若數(shù)列{an}的前2n項和為T2n,令bn=(3-T2n)·n·(n+1),求數(shù)列{bn}的最大項. 解析 (1)∵an+1=, ∴an+1=== ==1- =1-=1-(1-an-2)=an-2,n≥3, ∴周期T=(n+1)-(n-2)=3
17、. ∴a8=a3×2+2=a2=2. 而a2=,∴a1=. (2)an=1-,將an看作關(guān)于n的函數(shù),n∈N*,易知{an}是遞增數(shù)列. 答案 (1) (2)遞增 (3)①證明 因為anan+1=,an+1an+2=, 所以=. 又a1=1,a2=,所以數(shù)列a1,a3,…,a2n-1,…,是以1為首項,為公比的等比數(shù)列; 數(shù)列a2,a4,…,a2n,…,是以為首項,為公比的等比數(shù)列. ②解 由(1)可得T2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=+=3-3, 所以bn=3n(n+1),bn+1=3(n+1)(n+2), 所以bn+1-bn=3(n+
18、1) =3(n+1)(2-n), 所以b1<b2=b3>b4>…>bn>…, 所以(bn)max=b2=b3=. 規(guī)律方法 (1)解決數(shù)列的單調(diào)性問題可用以下三種方法 ①用作差比較法,根據(jù)an+1-an的符號判斷數(shù)列{an}是遞增數(shù)列、遞減數(shù)列還是常數(shù)列. ②用作商比較法,根據(jù)(an>0或an<0)與1的大小關(guān)系進行判斷. ③結(jié)合相應(yīng)函數(shù)的圖象直觀判斷. (2)解決數(shù)列周期性問題的方法 先根據(jù)已知條件求出數(shù)列的前幾項,確定數(shù)列的周期,再根據(jù)周期性求值. (3)數(shù)列的最值可以利用數(shù)列的單調(diào)性或求函數(shù)最值的思想求解. 【訓練4】 (1)(2018·哈爾濱模擬)若數(shù)列{an}滿
19、足an+1=a1=,則數(shù)列的第2 015項為________. (2)設(shè)an=-3n2+15n-18,則數(shù)列{an}中的最大項的值是________. 解析 (1)由已知可得a2=2×-1=, a3=2×=, a4=2×=, a5=2×-1=, ∴{an}為周期數(shù)列且T=4, ∴a2 015=a503×4+3=a3=. (2)∵an=-3+,由二次函數(shù)性質(zhì),得當n=2或3時,an最大,最大值為0. 答案 (1) (2)0 一、必做題 1.數(shù)列,-,,-,…的第10項是________. 解析 所給數(shù)列呈現(xiàn)分數(shù)形式,且正負相間,求通項公式時,我們可以把每一部分進行分解
20、:符號、分母、分子.很容易歸納出數(shù)列{an}的通項公式 an=(-1)n+1·,故a10=-. 答案?。? 2.(一題多解)若an=n2+λn+3(其中λ為實常數(shù)),n∈N*,且數(shù)列{an}為單調(diào)遞增數(shù)列,則實數(shù)λ的取值范圍是________. 解析 法一 (函數(shù)觀點)因為{an}為單調(diào)遞增數(shù)列,所以an+1>an,即(n+1)2+λ(n+1)+3>n2+λn+3,化簡為λ>-2n-1對一切n∈N*都成立,所以λ>-3. 故實數(shù)λ的取值范圍是(-3,+∞). 法二 (數(shù)形結(jié)合法)因為{an}為單調(diào)遞增數(shù)列,所以a1<a2,要保證a1<a2成立,二次函數(shù)f(x)=x2+λx+3的對稱軸
21、x=-應(yīng)位于1和2中點的左側(cè),即-<,亦即λ>-3,故實數(shù)λ的取值范圍為(-3,+∞). 答案 (-3,+∞) 3.已知a1=1,an=n(an+1-an)(n∈N*),則數(shù)列{an}的通項公式是________. 解析 ∵an=n(an+1-an),∴=, ∴an=···…···a1 =···…···1=n. 答案 an=n 4.若數(shù)列{an}滿足a1=2,a2=3,an=(n≥3且n∈N*),則a2 018=________. 解析 由已知a3==,a4==, a5==,a6==, a7==2,a8==3, ∴數(shù)列{an}具有周期性,T=6, ∴a2 018=a33
22、6×6+2=a2=3. 答案 3 5.數(shù)列{an}滿足an+an+1=(n∈N*),a2=2,Sn是數(shù)列{an}的前n項和,則S21=________. 解析 ∵an+an+1=,a2=2, ∴an= ∴S21=11×+10×2=. 答案 6.數(shù)列{an}中,已知a1=1,a2=2,an+1=an+an+2(n∈N*),則a7=________. 解析 由已知an+1=an+an+2,a1=1,a2=2, 能夠計算出a3=1,a4=-1,a5=-2,a6=-1,a7=1. 答案 1 7.已知數(shù)列{an}的前n項和為Sn,Sn=2an-n,則an=________. 解
23、析 當n=1時,S1=a1=2a1-1,得a1=1,當n≥2時,an=Sn-Sn-1=2an-n-2an-1+(n-1), 即an=2an-1+1,∴an+1=2(an-1+1), ∴數(shù)列{an+1}是首項為a1+1=2,公比為2的等比數(shù)列,∴an+1=2·2n-1=2n,∴an=2n-1. 答案 2n-1 8.(2017·無錫期末)對于數(shù)列{an},定義數(shù)列{bn}滿足bn=an+1-an(n∈N*),且bn+1-bn=1 (n∈N*),a3=1,a4=-1,則a1=________. 解析 因為b3=a4-a3=-1-1=-2,所以b2=a3-a2=b3-1=-3,所以b1=a2
24、-a1=b2-1=-4,三式相加可得a4-a1=-9,所以a1=a4+9=8. 答案 8 9.已知Sn為正項數(shù)列{an}的前n項和,且滿足Sn=a+an(n∈N*). (1)求a1,a2,a3,a4的值; (2)求數(shù)列{an}的通項公式. 解 (1)由Sn=a+an (n∈N*)可得 a1=a+a1,解得a1=1, S2=a1+a2=a+a2,解得a2=2, 同理,a3=3,a4=4. (2)Sn=+a,① 當n≥2時,Sn-1=+a,② ①-②得(an-an-1-1)(an+an-1)=0. 由于an+an-1≠0,所以an-an-1=1, 又由(1)知a1=1,
25、 故數(shù)列{an}為首項為1,公差為1的等差數(shù)列, 故an=n. 10.已知數(shù)列{an}的前n項和Sn=n2+1,數(shù)列{bn}滿足bn=,且前n項和為Tn,設(shè)cn=T2n+1-Tn. (1)求數(shù)列{bn}的通項公式; (2)判斷數(shù)列{cn}的增減性. 解 (1)∵a1=2,an=Sn-Sn-1=2n-1(n≥2). ∴bn= (2)∵cn=bn+1+bn+2+…+b2n+1 =++…+, ∴cn+1-cn=+- =-=<0, ∴{cn}是遞減數(shù)列. 二、選做題 11.已知數(shù)列{an}滿足a1=2,an+1=(n∈N*),則該數(shù)列的前2 019項的乘積a1·a2·a3·…
26、·a2 019=________. 解析 由題意可得a2==-3,a3==-,a4==,a5==2=a1, ∴數(shù)列{an}是以4為周期的數(shù)列,而2 019=4×504+3,a1a2a3a4=1, ∴前2 019項的乘積為1504·a1a2a3=3. 答案 3 12.設(shè)數(shù)列{an}的前n項和為Sn.已知a1=a(a≠3),an+1=Sn+3n,n∈N*. (1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項公式; (2)若an+1≥an,n∈N*,求a的取值范圍. 解 (1)依題意,Sn+1-Sn=an+1=Sn+3n, 即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n). 即bn+1=2bn.又b1=S1-3=a-3, 因此,所求通項公式為bn=Sn-3n=(a-3)2n-1,n∈N*. (2)由(1)知Sn=3n+(a-3)2n-1,n∈N*, 于是,當n≥2時, an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2 =2×3n-1+(a-3)2n-2, an+1-an=4×3n-1+(a-3)2n-2=2n-2, 當n≥2時,an+1≥an?12+a-3≥0?a≥-9. 又a2=a1+3>a1. 綜上,所求的a的取值范圍是[-9,3)∪(3,+∞). 14
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復(fù)習題含答案
- 1 各種煤礦安全考試試題含答案