2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文

上傳人:xt****7 文檔編號:105726219 上傳時(shí)間:2022-06-12 格式:DOC 頁數(shù):6 大?。?09.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文_第1頁
第1頁 / 共6頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文_第2頁
第2頁 / 共6頁
2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文》由會員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、2022年高考數(shù)學(xué)二輪復(fù)習(xí) 專題八 選考4系列 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程 文 1.在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(t為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,直線l的方程為ρsin=m(m∈R). (1)求圓C的普通方程及直線l的直角坐標(biāo)方程; (2)設(shè)圓心C到直線l的距離等于2,求m的值. 2.已知?jiǎng)狱c(diǎn)P,Q都在曲線C:(t為參數(shù))上,對應(yīng)參數(shù)分別為t=α與t=2α(0<α<2π),M為PQ的中點(diǎn). (1)求點(diǎn)M的軌跡的參數(shù)方程; (2)將點(diǎn)M到坐標(biāo)原點(diǎn)的距離d表

2、示為α的函數(shù),并判斷點(diǎn)M的軌跡是否過坐標(biāo)原點(diǎn). 3.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(s為參數(shù)).設(shè)P為曲線C上的動點(diǎn),求點(diǎn)P到直線l的距離的最小值. 4.(2018全國Ⅰ,文22)在直角坐標(biāo)系xOy中,曲線C1的方程為y=k|x|+2.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2+2ρcos θ-3=0. (1)求C2的直角坐標(biāo)方程; (2)若C1與C2有且僅有三個(gè)公共點(diǎn),求C1的方程. 5.在極坐標(biāo)系中,曲線

3、C的極坐標(biāo)方程為ρsin2θ-cos θ=0,點(diǎn)M.以極點(diǎn)O為原點(diǎn),以極軸為x軸正半軸建立直角坐標(biāo)系.斜率為-1的直線l過點(diǎn)M,且與曲線C交于A,B兩點(diǎn). (1)求出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程; (2)求點(diǎn)M到A,B兩點(diǎn)的距離之積. 二、思維提升訓(xùn)練 6.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,☉C的極坐標(biāo)方程為ρ=2sin θ. (1)寫出☉C的直角坐標(biāo)方程; (2)P為直線l上一動點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo). 7.已知直線l的參數(shù)

4、方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=. (1)寫出直線l的極坐標(biāo)方程與曲線C的直角坐標(biāo)方程; (2)若點(diǎn)P是曲線C上的動點(diǎn),求點(diǎn)P到直線l的距離的最小值,并求出點(diǎn)P的坐標(biāo). 8.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin=4. (1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程; (2)設(shè)P為曲線C1上的動點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P的坐標(biāo). 專題能力訓(xùn)練20 坐標(biāo)系與參數(shù)方程(

5、選修4—4) 一、能力突破訓(xùn)練 1.解 (1)消去參數(shù)t,得到圓C的普通方程為(x-1)2+(y+2)2=9.由ρsin=m, 得ρsin θ-ρcos θ-m=0. 所以直線l的直角坐標(biāo)方程為x-y+m=0. (2)依題意,圓心C到直線l的距離等于2, 即=2,解得m=-3±2. 2.解 (1)依題意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α), 因此M(cos α+cos 2α,sin α+sin 2α). 點(diǎn)M的軌跡的參數(shù)方程為(α為參數(shù),0<α<2π). (2)點(diǎn)M到坐標(biāo)原點(diǎn)的距離 d=(0<α<2π). 當(dāng)α=π時(shí),d=0,故點(diǎn)M的

6、軌跡過坐標(biāo)原點(diǎn). 3.解 直線l的普通方程為x-2y+8=0. 因?yàn)辄c(diǎn)P在曲線C上,設(shè)P(2s2,2s), 從而點(diǎn)P到直線l的距離d=. 當(dāng)s=時(shí),dmin=. 因此當(dāng)點(diǎn)P的坐標(biāo)為(4,4)時(shí),曲線C上點(diǎn)P到直線l的距離取到最小值. 4.解 (1)由x=ρcos θ,y=ρsin θ得C2的直角坐標(biāo)方程為(x+1)2+y2=4. (2)由(1)知C2是圓心為A(-1,0),半徑為2的圓. 由題設(shè)知,C1是過點(diǎn)B(0,2)且關(guān)于y軸對稱的兩條射線.記y軸右邊的射線為l1,y軸左邊的射線為l2,由于B在圓C2的外面,故C1與C2有且僅有三個(gè)公共點(diǎn)等價(jià)于l1與C2只有一個(gè)公共點(diǎn)且l2

7、與C2有兩個(gè)公共點(diǎn),或l2與C2只有一個(gè)公共點(diǎn)且l1與C2有兩個(gè)公共點(diǎn). 當(dāng)l1與C2只有一個(gè)公共點(diǎn)時(shí),A到l1所在直線的距離為2,所以=2,故k=-或k=0.經(jīng)檢驗(yàn),當(dāng)k=0時(shí),l1與C2沒有公共點(diǎn);當(dāng)k=-時(shí),l1與C2只有一個(gè)公共點(diǎn),l2與C2有兩個(gè)公共點(diǎn). 當(dāng)l2與C2只有一個(gè)公共點(diǎn)時(shí),A到l2所在直線的距離為2,所以=2,故k=0或k=,經(jīng)檢驗(yàn),當(dāng)k=0時(shí),l1與C2沒有公共點(diǎn);當(dāng)k=時(shí),l2與C2沒有公共點(diǎn). 綜上,所求C1的方程為y=-|x|+2. 5.解 (1)x=ρcos θ,y=ρsin θ, 由ρsin2θ-cos θ=0,得ρ2sin2θ=ρcos θ. 所

8、以y2=x即為曲線C的直角坐標(biāo)方程. 點(diǎn)M的直角坐標(biāo)為(0,1), 直線l的傾斜角為, 故直線l的參數(shù)方程為 (t為參數(shù)),即(t為參數(shù)). (2)把直線l的參數(shù)方程(t為參數(shù))代入曲線C的方程得=-t, 即t2+3t+2=0,Δ=(3)2-4×2=10>0. 設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2, 則 又直線l經(jīng)過點(diǎn)M,故由t的幾何意義得 點(diǎn)M到A,B兩點(diǎn)的距離之積 |MA|·|MB|=|t1||t2|=|t1·t2|=2. 二、思維提升訓(xùn)練 6.解 (1)由ρ=2sin θ,得ρ2=2ρsin θ, 從而有x2+y2=2y,所以x2+(y-)2=3. (2)設(shè)P

9、,又C(0,), 則|PC|=, 故當(dāng)t=0時(shí),|PC|取得最小值, 此時(shí),點(diǎn)P的直角坐標(biāo)為(3,0). 7.解 (1)由得x-y=1, 故直線l的極坐標(biāo)方程為ρcos θ-ρsin θ=1, 即=1, 即ρcos=1. ∵ρ=, ∴ρ=, ∴ρcos2θ=sin θ, ∴(ρcos θ)2=ρsin θ, 即曲線C的直角坐標(biāo)方程為y=x2. (2)設(shè)P(x0,y0),y0=,則P到直線l的距離d=. ∴當(dāng)x0=時(shí),dmin=,此時(shí)P. ∴當(dāng)點(diǎn)P的坐標(biāo)為時(shí),P到直線l的距離最小,最小值為. 8.解 (1)由曲線C1:(α為參數(shù)),得 (α為參數(shù)), 兩式兩邊平方相加,得+y2=1, 即曲線C1的普通方程為+y2=1. 由曲線C2:ρsin=4,得 ρ(sin θ+cos θ)=4, 即ρsin θ+ρcos θ=8,所以x+y-8=0, 即曲線C2的直角坐標(biāo)方程為x+y-8=0. (2)由(1)知,橢圓C1與直線C2無公共點(diǎn),橢圓上的點(diǎn)P(cos α,sin α)到直線x+y-8=0的距離d=, 所以當(dāng)sin=1時(shí),d的最小值為3,此時(shí)點(diǎn)P的坐標(biāo)為.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!