《2022高考數(shù)學大二輪復習 專題八 選考4系列 專題能力訓練23 不等式選講 理》由會員分享,可在線閱讀,更多相關《2022高考數(shù)學大二輪復習 專題八 選考4系列 專題能力訓練23 不等式選講 理(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、2022高考數(shù)學大二輪復習 專題八 選考4系列 專題能力訓練23 不等式選講 理
1.設a>0,|x-1|<,|y-2|<,求證:|2x+y-4|f(x)在x∈R上有解,求實數(shù)t的取值范圍.
3.設函數(shù)f(x)=+|x-a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.
4.(
2、2018全國Ⅲ,理23)設函數(shù)f(x)=|2x+1|+|x-1|.
(1)畫出y=f(x)的圖象;
(2)當x∈[0,+∞)時,f(x)≤ax+b,求a+b的最小值.
5.已知函數(shù)f(x)=,M為不等式f(x)<2的解集.
(1)求M;
(2)證明:當a,b∈M時,|a+b|<|1+ab|.
6.設關于x的不等式|2x-a|+|x+3|≥2x+4的解集為A.
(1)若a=1,求A;
(2)若A=R,求a的取值范圍.
7.已知函數(shù)f(x)=|2x-
3、1|+|x-a|,a∈R.
(1)當a=3時,解不等式f(x)≤4;
(2)若f(x)=|x-1+a|,求x的取值范圍.
二、思維提升訓練
8.已知函數(shù)f(x)= g(x)=af(x)-|x-2|,a∈R.
(1)當a=0時,若g(x)≤|x-1|+b對任意x∈(0,+∞)恒成立,求實數(shù)b的取值范圍;
(2)當a=1時,求函數(shù)y=g(x)的最小值.
9.已知函數(shù)f(x)=|x-3|-|x-a|.
(1)當a=2時,解不等式f(x)≤-;
(2)若存在實數(shù)a,使得不等式f(x)≥a成立,求實數(shù)a
4、的取值范圍.
10.設函數(shù)f(x)=|x-1|+|x-a|.
(1)若a=-1,解不等式f(x)≥3;
(2)如果?x∈R,f(x)≥2,求a的取值范圍.
專題能力訓練23 不等式選講(選修4—5)
一、能力突破訓練
1.證明 因為|x-1|<,|y-2|<,
所以|2x+y-4|=|2(x-1)+(y-2)|
≤2|x-1|+|y-2|<2=a.
2.解 (1)原不等式等價于
得-x<-3或-3≤x≤1或1
5、+3)|=4,要使t2+3t>f(x)在x∈R上有解,只需t2+3t大于f(x)的最小值,∴t2+3t>[f(x)]min=4?t2+3t-4>0?t<-4或t>1.
3.(1)證明 由a>0,有f(x)=+|x-a|+a≥2.故f(x)≥2.
(2)解 f(3)=+|3-a|.當a>3時,f(3)=a+,由f(3)<5,得3
6、且僅當a≥3且b≥2時,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值為5.
5.(1)解 f(x)=
當x≤-時,由f(x)<2得-2x<2,解得x>-1;
當-
7、2x+x+3≥2x+4,解得-3-2時,|2x-a|+|x+3|=|2x-a|+x+3≥2x+4,即|2x-a|≥x+1,
得x≥a+1或x,
所以a+1≤-2或a+1,得a≤-2.
綜上,a的取值范圍為a≤-2.
7.解 (1)當a=3時,函數(shù)f(x)=|2x-1|+|x-3|=
如圖,由于直線y=4和函數(shù)f(x)的圖象交于點(0,4),(2,4),
故不等式f(x)≤4的解集為
8、(0,2).
(2)由f(x)=|x-1+a|,可得|2x-1|+|x-a|=|x-1+a|.
由于|2x-1|+|x-a|≥|(2x-1)-(x-a)|=|x-1+a|,
當且僅當(2x-1)(x-a)≤0時取等號,
故有(2x-1)(x-a)≤0.
當a=時,可得x=,故x的取值范圍為;
當a>時,可得x≤a,故x的取值范圍為;
當a<時,可得a≤x,故x的取值范圍為
二、思維提升訓練
8.解 (1)當a=0時,g(x)=-|x-2|(x>0),
g(x)≤|x-1|+b?-b≤|x-1|+|x-2|.
|x-1|+|x-2|≥|(x-1)-(x-2)|=1,
當且
9、僅當1≤x≤2時等號成立.
故實數(shù)b的取值范圍是[-1,+∞).
(2)當a=1時,g(x)=
當02-2=0;
當x≥1時,g(x)≥0,當且僅當x=1時等號成立;
故當x=1時,函數(shù)y=g(x)取得最小值0.
9.解 (1)∵a=2,
∴f(x)=|x-3|-|x-2|=
∴f(x)≤-等價于解得x<3或x≥3,∴不等式的解集為
(2)由不等式性質可知f(x)=|x-3|-|x-a|≤|(x-3)-(x-a)|=|a-3|,
∴若存在實數(shù)x,使得不等式f(x)≥a成立,則|a-3|≥a,解得a
∴實數(shù)a的取值范圍是
10.解 (1)當a=-1時,f(x)=|x-1|+|x+1|,
f(x)=
作出函數(shù)f(x)=|x-1|+|x+1|的圖象.
由圖象可知,不等式f(x)≥3的解集為
(2)若a=1,則f(x)=2|x-1|,不滿足題設條件;
若a<1,則f(x)=
f(x)的最小值為1-a;
若a>1,則f(x)=
f(x)的最小值為a-1.
故對于?x∈R,f(x)≥2的充要條件是|a-1|≥2,a的取值范圍是(-∞,-1]∪[3,+∞).