2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案

上傳人:xt****7 文檔編號:106862281 上傳時間:2022-06-14 格式:DOC 頁數(shù):6 大?。?14.50KB
收藏 版權(quán)申訴 舉報 下載
2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案_第1頁
第1頁 / 共6頁
2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案_第2頁
第2頁 / 共6頁
2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案》由會員分享,可在線閱讀,更多相關(guān)《2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、2022年高考總復(fù)習(xí)文數(shù)(人教版)講義:選修4-5 不等式選講 第2節(jié) 不等式證明 Word版含答案 考點 高考試題 考查內(nèi)容 核心素養(yǎng) 不等式 證明 xx·全國卷Ⅱ·T23·10分 利用均值不等式證明不等式 邏輯推理 xx·浙江卷·T22·15分 證明以數(shù)列為載體的不等式問題 邏輯推理 xx·全國卷Ⅱ·T24·10分 絕對值不等式的解法與絕對值不等式的證明 數(shù)學(xué)運算 邏輯推理 xx·全國卷Ⅱ·T24·10分 不等式證明和充要條件的判斷 邏輯推理 命題分析 從近幾年高考命題來看,作為新課程選考的重要內(nèi)容,不等式證明嚴(yán)格按考試說明要求命題,試題難度不超過

2、中等,以解答題形式出現(xiàn),著重考查比較法、綜合法,證明不等式,以及放縮法的應(yīng)用. 提醒: 比較法證明不等式最常用的是差值比較法,其基本步驟是:作差—變形—判斷差的符號—下結(jié)論.其中“變形”是證明的關(guān)鍵,一般通過因式分解或配方將差式變形為幾個因式的積或配成幾個代數(shù)式平方和的形式,當(dāng)差式是二次三項式時,有時也可用判別式來判斷差值的符號.個別題目也可用柯西不等式來證明. 1.判斷下列結(jié)論的正誤(正確的打“√”,錯誤的打“×”) (1)用反證法證明命題“a,b,c全為0”時假設(shè)為“a,b,c全不為0”.(  ) (2)若實數(shù)x、y適合不等式xy>1,x+y>-2,則x>0,y>0.(  )

3、 答案:(1)× (2)√ 2.設(shè)不等式|2x-1|<1的解集為M. (1)求集合M. (2)若a,b∈M,試比較ab+1與a+b的大?。? 解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1. 所以M={x|0<x<1}. (2)由(1)和a,b∈M可知0<a<1,0<b<1, 所以(ab+1)-(a+b)=(a-1)(b-1)>0. 故ab+1>a+b. 3.已知a>b>c,且a+b+c=0,求證:0, 只需證(a-b)

4、(2a+b)>0, 只需證(a-b)(a-c)>0. ∵a>b>c,∴a-b>0,a-c>0. ∴(a-b)(a-c)>0顯然成立, 故原不等式成立. 比較法證明不等式 [明技法] 作商比較法證明不等式的一般步驟 ①作商:將不等式左右兩邊的式子進(jìn)行作商; ②變形:將商式的分子放(縮),分母不變,或分子不變,分母放(縮),或分子放(縮),分母縮(放),從而化簡商式為容易和1比較大小的形式; ③判斷:判斷商與1的大小關(guān)系,就是判斷商大于1或小于1或等于1; ④結(jié)論. [提能力] 【典例】 求證:(1)當(dāng)x∈R時,1+2x4≥2x3+x2; (2)當(dāng)a,b∈(0,

5、+∞)時,aabb≥(ab). 證明:(1)方法一 (1+2x4)-(2x3+x2) =2x3(x-1)-(x+1)(x-1) =(x-1)(2x3-x-1) =(x-1)(2x3-2x+x-1) =(x-1)[2x(x2-1)+(x-1)] =(x-1)2(2x2+2x+1) =(x-1)2≥0, 所以1+2x4≥2x3+x2. 方法二 (1+2x4)-(2x3+x2) =x4-2x3+x2+x4-2x2+1 =(x-1)2·x2+(x2-1)2≥0, 所以1+2x4≥2x3+x2. (2)=ab=, 當(dāng)a=b時,=1; 當(dāng)a>b>0時,>1,>0,>1; 當(dāng)

6、b>a>0時,0<<1,<0,>1. 所以aabb≥(ab). [刷好題] 1.設(shè)a,b是非負(fù)實數(shù),求證:a3+b3≥(a2+b2). 證明:由a,b是非負(fù)實數(shù),作差得 a3+b3-(a2+b2) =a2(-)+b2(-) =(-)[()5-()5]. 當(dāng)a≥b時,≥,從而()5≥()5, 得(-)[()5-()5]≥0; 當(dāng)a<b時,<,從而()5<()5, 得(-)[()5-()5]>0, 所以a3+b3≥(a2+b2). 2.已知a,b∈(0,+∞),求證:abba≤(ab). 證明:=ab-ba-=. 當(dāng)a=b時,=1; 當(dāng)a>b>0時,0<<1, >

7、0,<1. 當(dāng)b>a>0時,>1,<0,<1. 所以abba≤(ab). 用綜合法、分析法證明不等式 [明技法] 分析法與綜合法常常結(jié)合起來使用,稱為分析綜合法,其實質(zhì)是既充分利用已知條件,又時刻瞄準(zhǔn)解題目標(biāo),即不僅要搞清已知什么,還要明確干什么,通常用分析法找到解題思路,用綜合法書寫證題過程. [提能力] 【典例】 設(shè)x≥1,y≥1,求證:x+y+≤++xy. 證明:由于x≥1,y≥1, 要證x+y+≤++xy, 只需證xy(x+y)+1≤y+x+(xy)2. 因為[y+x+(xy)2]-[xy(x+y)+1] =[(xy)2-1]-[xy(x+y)-(x+y)]

8、 =(xy+1)(xy-1)-(x+y)(xy-1) =(xy-1)(xy-x-y+1) =(xy-1)(x-1)(y-1), 因為x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0, 從而所要證明的不等式成立. [刷好題] 設(shè)a,b,c均為正數(shù),且a+b+c=1.證明: (1)ab+bc+ca≤; (2)++≥1. 證明:(1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得 a2+b2+c2≥ab+bc+ca. 由題設(shè)得(a+b+c)2=1, 即a2+b2+c2+2ab+2bc+2ca=1, 所以3(ab+bc+ca)≤1,即ab+bc+c

9、a≤. (2)因為+b≥2a,+c≥2b,+a≥2c, 所以+++(a+b+c)≥2(a+b+c), 即++≥a+b+c. 所以++≥1. 反證法證明不等式 [明技法] 利用反證法證明問題的一般步驟 (1)否定原結(jié)論; (2)從假設(shè)出發(fā),導(dǎo)出矛盾; (3)證明原命題正確. [提能力] 【典例】 (1)設(shè)0<a,b,c<1,求證:(1-a)b,(1-b)c,(1-c)a不可能同時大于. 證明:設(shè)(1-a)b>,(1-b)c>,(1-c)a>, 三式相乘得(1-a)b·(1-b)c·(1-c)a>,① 又因為0<a,b,c<1, 所以0<(1-a)a≤2=.

10、同理:(1-b)b≤,(1-c)c≤, 以上三式相乘得(1-a)a·(1-b)b·(1-c)c≤,與①矛盾. 所以(1-a)b,(1-b)c,(1-c)a不可能同時大于. (2)已知a+b+c>0,ab+bc+ca>0,abc>0,求證:a,b,c>0. 證明:①設(shè)a<0,因為abc>0,所以bc<0. 又由a+b+c>0,則b+c>-a>0, 所以ab+bc+ca=a(b+c)+bc<0,與題設(shè)矛盾. ②若a=0,則與abc>0矛盾,所以必有a>0. 同理可證:b>0,c>0. 綜上可證a,b,c>0. [刷好題] 1.已知f(x)=x2+px+q, 求證:(1)f(

11、1)+f(3)-2f(2)=2; (2)|f(1)|,|f(2)|,|f(3)|中至少有一個不小于. 證明:(1)f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2. (2)假設(shè)|f(1)|,|f(2)|,|f(3)|都小于, 則|f(1)|+2|f(2)|+|f(3)|<2. 而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2)=2矛盾, ∴|f(1)|,|f(2)|,|f(3)|中至少有一個不小于. 2.已知函數(shù)y=f(x)在R上是增函數(shù),且f(a)+f(-b)<f(b)+f(-a),求證:a<b. 證明:假設(shè)a<b不成立,則a=b或a>b. 當(dāng)a=b時,-a=-b, 則有f(a)=f(b),f(-a)=f(-b), 于是f(a)+f(-b)=f(b)+f(-a),與已知矛盾. 當(dāng)a>b時,-a<-b,由函數(shù)y=f(x)的單調(diào)性可得f(a)>f(b),f(-b)>f(-a), 于是有f(a)+f(-b)>f(b)+f(-a), 與已知矛盾.故假設(shè)不成立.∴a<b.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!