2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第七節(jié) 拋物線學(xué)案 文(含解析)新人教A版

上傳人:彩*** 文檔編號(hào):106984842 上傳時(shí)間:2022-06-14 格式:DOCX 頁(yè)數(shù):11 大?。?.82MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第七節(jié) 拋物線學(xué)案 文(含解析)新人教A版_第1頁(yè)
第1頁(yè) / 共11頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第七節(jié) 拋物線學(xué)案 文(含解析)新人教A版_第2頁(yè)
第2頁(yè) / 共11頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第七節(jié) 拋物線學(xué)案 文(含解析)新人教A版_第3頁(yè)
第3頁(yè) / 共11頁(yè)

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第七節(jié) 拋物線學(xué)案 文(含解析)新人教A版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第八章 平面解析幾何 第七節(jié) 拋物線學(xué)案 文(含解析)新人教A版(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第七節(jié) 拋 物 線 2019考綱考題考情 1.拋物線的概念 平面內(nèi)與一個(gè)定點(diǎn)F和一條定直線l(F?l)的距離相等的點(diǎn)的軌跡叫做拋物線,點(diǎn)F叫做拋物線的焦點(diǎn),直線l叫做拋物線的準(zhǔn)線。 2.拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì) 注:拋物線上P點(diǎn)坐標(biāo)為(x0,y0)。 拋物線焦點(diǎn)弦的4個(gè)常用結(jié)論 設(shè)AB是過(guò)拋物線y2=2px(p>0)焦點(diǎn)F的弦,若A(x1,y1),B(x2,y2),則 (1)x1x2=,y1y2=-p2。 (2)弦長(zhǎng)|AB|=x1+x2+p=(α為弦AB的傾斜角)。 (3)以弦AB為直徑的圓與準(zhǔn)線相切。 (4)過(guò)焦點(diǎn)垂直于對(duì)稱軸的弦長(zhǎng)等于2p(通

2、徑)。 一、走進(jìn)教材 1.(選修1-1P63練習(xí)T1改編)過(guò)點(diǎn)P(-2,3)的拋物線的標(biāo)準(zhǔn)方程是(  ) A.y2=-x或x2=y(tǒng) B.y2=x或x2=y(tǒng) C.y2=x或x2=-y D.y2=-x或x2=-y 解析 設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=kx或x2=my,代入點(diǎn)P(-2,3),解得k=-,m=,所以y2=-x或x2=y(tǒng)。故選A。 答案 A 2.(選修1-1P64A組T3改編)拋物線y2=8x上到其焦點(diǎn)F距離為5的點(diǎn)P有(  ) A.0個(gè) B.1個(gè) C.2個(gè) D.4個(gè) 解析 設(shè)P(x1,y1),則|PF|=x1+2=5,y=8x1,所以x1=3,y1=±2。故

3、滿足條件的點(diǎn)P有兩個(gè)。故選C。 答案 C 二、走近高考 3.(2018·北京高考)已知直線l過(guò)點(diǎn)(1,0)且垂直于x軸。若l被拋物線y2=4ax截得的線段長(zhǎng)為4,則拋物線的焦點(diǎn)坐標(biāo)為_(kāi)_______。 解析 由題意知,直線l的方程為x=1且a>0,對(duì)于y2=4ax,當(dāng)x=1時(shí),y=±2,由于l被拋物線y2=4ax截得的線段長(zhǎng)為4,所以4=4,所以a=1,所以拋物線的焦點(diǎn)坐標(biāo)為(1,0)。 答案 (1,0) 4.(2017·天津高考)設(shè)拋物線y2=4x的焦點(diǎn)為F,準(zhǔn)線為l。已知點(diǎn)C在l上,以C為圓心的圓與y軸的正半軸相切于點(diǎn)A。若∠FAC=120°,則圓的方程為_(kāi)_______。

4、解析 由拋物線的方程可知F(1,0),準(zhǔn)線方程為x=-1,設(shè)點(diǎn)C(-1,t),t>0,則圓C的方程為(x+1)2+(y-t)2=1,因?yàn)椤螰AC=120°,CA⊥y軸,所以∠OAF=30°,在△AOF中,OF=1,所以O(shè)A=,即t=,故圓C的方程為(x+1)2+(y-)2=1。 答案 (x+1)2+(y-)2=1 三、走出誤區(qū) 微提醒:①忽視p的幾何意義;②忽視k=0的討論;③易忽視焦點(diǎn)的位置出現(xiàn)錯(cuò)誤。 5.已知拋物線C與雙曲線x2-y2=1有相同的焦點(diǎn),且頂點(diǎn)在原點(diǎn),則拋物線C的方程是(  ) A.y2=±2x B.y2=±2x C.y2=±4x D.y2=±4x 解析 由

5、已知可知雙曲線的焦點(diǎn)為(-,0),(,0)。設(shè)拋物線方程為y2=±2px(p>0),則=,所以p=2,所以拋物線方程為y2=±4x。故選D。 答案 D 6.設(shè)拋物線y2=8x的準(zhǔn)線與x軸交于點(diǎn)Q,若過(guò)點(diǎn)Q的直線l與拋物線有公共點(diǎn),則直線l的斜率的取值范圍是________。 解析 Q(-2,0),當(dāng)直線l的斜率不存在時(shí),不滿足題意,故設(shè)直線l的方程為y=k(x+2),代入拋物線方程,消去y整理得k2x2+(4k2-8)x+4k2=0,當(dāng)k=0時(shí),l與拋物線有公共點(diǎn);當(dāng)k≠0時(shí),Δ=64(1-k2)≥0得-1≤k<0或0

6、焦點(diǎn)在直線x-2y-4=0上,則此拋物線的標(biāo)準(zhǔn)方程為_(kāi)_______。 解析 令x=0,得y=-2;令y=0,得x=4。所以拋物線的焦點(diǎn)是(4,0)或(0,-2),故所求拋物線的標(biāo)準(zhǔn)方程為y2=16x或x2=-8y。 答案 y2=16x或x2=-8y 考點(diǎn)一拋物線的定義及應(yīng)用 【例1】 (1)已知拋物線x2=4y上一點(diǎn)A縱坐標(biāo)為4,則點(diǎn)A到拋物線焦點(diǎn)的距離為(  ) A. B.4 C.5 D. (2)已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于(  )

7、 A. B.1 C.2 D.4 解析 (1)拋物線x2=4y的準(zhǔn)線方程為y=-1,點(diǎn)A到準(zhǔn)線的距離為5,根據(jù)拋物線定義可知點(diǎn)A到焦點(diǎn)的距離為5。故選C。 (2)因?yàn)镸,N分別是PQ,PF的中點(diǎn),所以MN∥FQ,且PQ∥x軸。又∠NRF=60°,所以∠FQP=60°。由拋物線定義知|PQ|=|PF|,所以△FQP為正三角形。則FM⊥PQ,所以|QM|=p=2,正三角形邊長(zhǎng)為4。因?yàn)閨PQ|=4,|FN|=|PF|=2,且△FRN為正三角形,所以|FR|=2。故選C。 答案 (1)C (2)C 利用拋物線的定義解決問(wèn)題時(shí),應(yīng)靈活地進(jìn)行拋物線上的點(diǎn)到焦點(diǎn)距離與其到準(zhǔn)線距離間的等價(jià)轉(zhuǎn)

8、化?!翱吹綔?zhǔn)線應(yīng)該想到焦點(diǎn),看到焦點(diǎn)應(yīng)該想到準(zhǔn)線”,這是解決拋物線距離有關(guān)問(wèn)題的有效途徑。 【變式訓(xùn)練】 (1)(2019·重慶調(diào)研)已知點(diǎn)F是拋物線y2=4x的焦點(diǎn),P是該拋物線上任意一點(diǎn),M(5,3),則|PF|+|PM|的最小值是(  ) A.6 B.5 C.4 D.3 (2)如果點(diǎn)P1,P2,P3,…,P10是拋物線y2=2x上的點(diǎn),它們的橫坐標(biāo)依次為x1,x2,x3,…,x10,F(xiàn)是拋物線的焦點(diǎn),若x1+x2+x3+…+x10=5,則|P1F|+|P2F|+|P3F|+…+|P10F|=________。 解析 (1)由題意知,拋物線的準(zhǔn)線l的方程為x=-1,過(guò)點(diǎn)P作P

9、E⊥l于點(diǎn)E,由拋物線的定義,得|PE|=|PF|,易知當(dāng)P,E,M三點(diǎn)在同一條直線上時(shí),|PF|+|PM|取得最小值,即(|PF|+|PM|)min=5-(-1)=6。故選A。 (2)由拋物線的定義可知,拋物線y2=2px(p>0)上的點(diǎn)P(x0,y0)到焦點(diǎn)F的距離|PF|=x0+,在y2=2x中,p=1,所以|P1F|+|P2F|+…+|P10F|=x1+x2+…+x10+5p=10。 答案 (1)A (2)10 考點(diǎn)二拋物線的標(biāo)準(zhǔn)方程 【例2】 如圖,過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,交其準(zhǔn)線于點(diǎn)C,若|BC|=2|BF|,且|AF|=3,則此拋

10、物線的方程為(  ) A.y2=9x B.y2=6x C.y2=3x D.y2=x 解析 如圖,過(guò)點(diǎn)A,B分別作準(zhǔn)線的垂線,交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,則由已知得|BC|=2a,由拋物線定義得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因?yàn)閨AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,從而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此拋物線的方程為y2=3x,故選C。 答案 C 求拋物線的標(biāo)準(zhǔn)方程應(yīng)注意以下幾點(diǎn) 1.當(dāng)坐標(biāo)系已建立時(shí),應(yīng)根據(jù)條件確定拋物線的標(biāo)準(zhǔn)方程屬于四種類型中的哪一種。 2.要

11、注意把握拋物線的頂點(diǎn)、對(duì)稱軸、開(kāi)口方向與方程之間的對(duì)應(yīng)關(guān)系。 3.要注意參數(shù)p的幾何意義是焦點(diǎn)到準(zhǔn)線的距離,利用它的幾何意義來(lái)解決問(wèn)題。 【變式訓(xùn)練】 (1)(2019·湖北聯(lián)考)已知拋物線y2=2px(p>0),點(diǎn)C(-4,0),過(guò)拋物線的焦點(diǎn)作垂直于x軸的直線,與拋物線交于A,B兩點(diǎn),若△CAB的面積為24,則以直線AB為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程是(  ) A.y2=4x B.y2=-4x C.y2=8x D.y2=-8x (2)已知雙曲線C1:-=1(a>0,b>0)的離心率為2,若拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,則拋物線C2的方程是(  

12、) A.x2=16y B.x2=8y C.x2=y(tǒng) D.x2=y(tǒng) 解析 (1)因?yàn)锳B⊥x軸,且AB過(guò)點(diǎn)F,所以AB是焦點(diǎn)弦,且|AB|=2p,所以S△CAB=×2p×=24,解得p=4或-12(舍),所以拋物線方程為y2=8x,所以直線AB的方程為x=2,所以以直線AB為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程為y2=-8x。故選D。 (2)因?yàn)殡p曲線C1:-=1(a>0,b>0)的離心率為2,所以=2。因?yàn)殡p曲線的漸近線方程為bx±ay=0,拋物線C2:x2=2py(p>0)的焦點(diǎn)到雙曲線的漸近線的距離為2,所以=·==2,解得p=8,所以拋物線C2的方程是x2=16y。 答案 (1)D (2)A

13、 考點(diǎn)三拋物線的幾何性質(zhì) 【例3】 (2019·山西八校聯(lián)考)拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)N在x軸上且在點(diǎn)F的右側(cè),線段FN的垂直平分線l與拋物線在第一象限的交點(diǎn)為M,直線MN的傾斜角為135°,O為坐標(biāo)原點(diǎn),則直線OM的斜率為(  ) A.2-2 B.2-1 C.-1 D.3-4 解析 設(shè)點(diǎn)M(m>0),因?yàn)辄c(diǎn)M在FN的垂直平分線上且點(diǎn)N在焦點(diǎn)F的右側(cè),所以N,又MN的傾斜角為135°,所以kMN==-1,解得m=(+1)p,所以點(diǎn)M,所以直線OM的斜率為=2-2。故選A。 解析:如圖,設(shè)直線L為拋物線的準(zhǔn)線,過(guò)點(diǎn)M向準(zhǔn)線引垂線,垂足為A,交y軸于點(diǎn)B,

14、設(shè)|MF|=t,因?yàn)辄c(diǎn)M在FN的垂直平分線上,且直線MN的傾斜角為135°,所以直線MF的傾斜角為45°,由拋物線的定義得t=|MA|=p+t,即t==(2+)p,所以|OB|=t=(+1)p,|BM|=t-=,設(shè)直線OM的傾斜角為θ,則∠OMB=θ,所以直線OM的斜率為tanθ===2-2。故選A。 答案 A 解析幾何的核心思想是數(shù)形結(jié)合思想,如本題中:點(diǎn)在拋物線上即點(diǎn)的坐標(biāo)滿足方程,直線的斜率是傾斜角的正切值,線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。 【變式訓(xùn)練】  如圖,拋物線W:y2=4x與圓C:(x-1)2+y2=25交于A,B兩點(diǎn),點(diǎn)P為劣弧上不同于A,B

15、的一個(gè)動(dòng)點(diǎn),與x軸平行的直線PQ交拋物線W于點(diǎn)Q,則△PQC的周長(zhǎng)的取值范圍是(  ) A.(10,12) B.(12,14) C.(10,14) D.(9,11) 解析 由題意得,拋物線W的準(zhǔn)線l:x=-1,焦點(diǎn)為C(1,0),由拋物線的定義可得|QC|=xQ+1,圓(x-1)2+y2=25的圓心為(1,0),半徑為5,故△PQC的周長(zhǎng)為|QC|+|PQ|+|PC|=xQ+1+(xP-xQ)+5=6+xP。聯(lián)立,得得A(4,4),則xP∈(4,6),故6+xP∈(10,12),故△PQC的周長(zhǎng)的取值范圍是(10,12)。故選A。 解析:平移直線PQ,當(dāng)點(diǎn)A在直線PQ上時(shí),

16、屬于臨界狀態(tài),此時(shí)結(jié)合|CA|=5可知△PQC的周長(zhǎng)趨于2×5=10;當(dāng)直線PQ與x軸重合時(shí),屬于臨界狀態(tài),此時(shí)結(jié)合圓心坐標(biāo)(1,0)及圓的半徑為5可知△PQC的周長(zhǎng)趨于2×(1+5)=12。綜上,△PQC的周長(zhǎng)的取值范圍是(10,12)。故選A。 答案 A 考點(diǎn)四直線與拋物線的位置關(guān)系 【例4】 (2018·全國(guó)卷Ⅱ)設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過(guò)F且斜率為k(k>0)的直線l與C交于A,B兩點(diǎn),|AB|=8。 (1)求l的方程; (2)求過(guò)點(diǎn)A,B且與C的準(zhǔn)線相切的圓的方程。 解 (1)由題意得F(1,0),l的方程為y=k(x-1)(k>0)。 設(shè)A(x1,y1)

17、,B(x2,y2)。 由得k2x2-(2k2+4)x+k2=0。 Δ=16k2+16>0,故x1+x2=。 所以|AB|=|AF|+|BF|=(x1+1)+(x2+1)=。 由題設(shè)知=8,解得k=-1(舍去),k=1。 因此l的方程為y=x-1。 (2)由(1)得AB的中點(diǎn)坐標(biāo)為(3,2),所以AB的垂直平分線方程為y-2=-(x-3),即y=-x+5。 設(shè)所求圓的圓心坐標(biāo)為(x0,y0),則 解得或 因此所求圓的方程為(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144。 (1)有關(guān)直線與拋物線的弦長(zhǎng)問(wèn)題,要注意直線是否過(guò)拋物線的焦點(diǎn),若過(guò)拋物線

18、的焦點(diǎn),可直接使用公式|AB|=|x1+x2|+p(或|AB|=|y1+y2|+p),若不過(guò)焦點(diǎn),則必須使用一般的弦長(zhǎng)公式;(2)求圓的方程主要是確定圓心坐標(biāo)與半徑;(3)涉及直線與圓相交所得弦長(zhǎng)問(wèn)題通常是利用公式L=2來(lái)求解,其中R為圓的半徑,d為圓心到直線的距離。 【變式訓(xùn)練】 (2019·濰坊市統(tǒng)一考試)已知拋物線y2=4x與直線2x-y-3=0相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)OA,OB的斜率分別為k1,k2,則+的值為(  ) A.- B.- C. D. 解析 設(shè)A,B,易知y1y2≠0,則k1=,k2=,所以+=,將x=代入y2=4x,得y2-2y-6=0,所以y1+y2=

19、2,+=。故選D。 答案 D 1.(配合例1使用)設(shè)拋物線y2=2x的焦點(diǎn)為F,過(guò)F的直線交該拋物線于A,B兩點(diǎn),則|AF|+4|BF|的最小值為_(kāi)_______。 解析 易知拋物線y2=2x的焦點(diǎn)為F。當(dāng)AB⊥x軸時(shí),|AF|+4|BF|=1+4=5;當(dāng)直線AB斜率存在時(shí),可設(shè)直線AB的方程為y=k,代入拋物線方程得4k2x2-(4k2+8)x+k2=0,設(shè)A(x1,y1),B(x2,y2),則x1+x2=1+,x1x2=,所以|AF|+4|BF|=x1++4=x1+4x2+≥2+=,當(dāng)且僅當(dāng)x1=4x2=1,即x1=1,x2=時(shí),|AF|+4|BF|取得最小值。 答案  2.

20、(配合例2使用)已知拋物線E:y2=2px(p>0)的焦點(diǎn)為F,過(guò)F且斜率為1的直線交E于A,B兩點(diǎn),線段AB的中點(diǎn)為M,其垂直平分線交x軸于點(diǎn)C,MN⊥y軸于點(diǎn)N。若四邊形CMNF的面積等于7,則拋物線E的方程為(  ) A.y2=x  B.y2=2x C.y2=4x  D.y2=8x 解析 由題意,得F,直線AB的方程為y=x-,設(shè)A(x1,y1),B(x2,y2),M(x0,y0),聯(lián)立y=x-和y2=2px得,y2-2py-p2=0,則y1+y2=2p,所以y0==p。故N(0,p),又因?yàn)辄c(diǎn)M在直線AB上,所以x0=,即M,因?yàn)镸C⊥AB,所以kAB·kMC=-1,故kMC=-

21、1,從而直線MC的方程為y=-x+p,令y=0,得x=p,故C,四邊形CMNF是梯形,則S四邊形CMNF=(|MN|+|CF|)·|NO|=·p=p2=7,所以p2=4,又p>0,所以p=2,故拋物線E的方程為y2=4x。故選C。 答案 C 3.(配合例3使用)已知直線y=k(x+2)(k>0)與拋物線C:y2=8x相交于A,B兩點(diǎn),F(xiàn)為C的焦點(diǎn)。若|FA|=2|FB|,則k=(  ) A. B. C. D. 解析 設(shè)拋物線C:y2=8x的準(zhǔn)線為l,易知l:x=-2,直線y=k(x+2)恒過(guò)定點(diǎn)P(-2,0),如圖,過(guò)A,B分別作AM⊥l于點(diǎn)M,BN⊥l于點(diǎn)N,由|FA|=2|FB|,知|AM|=2|BN|,所以點(diǎn)B為線段AP的中點(diǎn),連接OB,則|OB|=|AF|,所以|OB|=|BF|,所以點(diǎn)B的橫坐標(biāo)為1,因?yàn)閗>0,所以點(diǎn)B的坐標(biāo)為(1,2),所以k==。故選D。 答案 D 11

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!