《直線與圓的位置關(guān)系》課件 北師大版必修2 .ppt
《《直線與圓的位置關(guān)系》課件 北師大版必修2 .ppt》由會員分享,可在線閱讀,更多相關(guān)《《直線與圓的位置關(guān)系》課件 北師大版必修2 .ppt(19頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第七章直線與圓的方程,第5課時直線與圓的位置關(guān)系,要點疑點考點,1.點與圓的位置關(guān)系設(shè)點P(x0,y0),圓(x-a)2+(y-b)2=r2,則點在圓內(nèi)?(x0-a)2+(y0-b)2<r2,點在圓上?(x0-a)2+(y0-b)2=r2,點在圓外?(x0-a)2+(y0-b)2>r2,2.線與圓的位置關(guān)系(1)設(shè)直線l,圓心C到l的距離為d.則圓C與l相離?d>r,圓C與l相切?d=r,圓C與l相交?d<r,(2)由圓C方程及直線l的方程,消去一個未知數(shù),得一元二次方程,設(shè)一元二次方程的根的判別式為Δ,則l與圓C相交?Δ>0,l與圓C相切?Δ=0,l與圓C相離?Δ<0,要點疑點考點,3.圓與圓的位置關(guān)系設(shè)圓O1的半徑為r1,圓O2的半徑為r2,則兩圓相離|O1O2|>r1+r2,外切?|O1O2|=r1+r2,內(nèi)切?|O1O2|=|r1-r2|,內(nèi)含?|O1O2|<|r1-r2|,相交?|r1-r2|<|O1O2|<|r1+r2|,要點疑點考點,基礎(chǔ)題例題,C,2.過定點M(-1,0)且斜率為k的直線與圓x2+4x+y2-5=0在第一象限內(nèi)的部分有交點,則k的取值范圍是(),基礎(chǔ)題例題,A,,,,x,y,O,,,-1,-2,.,.,M,,3.若P(2,-1)為(x-1)2+y2=25的弦AB的中點,則直線AB的方程是()A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0,A,基礎(chǔ)題例題,4.以點(1,2)為圓心,與直線4x+3y-35=0相切的圓的方程是__________________________,基礎(chǔ)題例題,5.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0,若A∩B中有且只有一個元素,則r的值是________,基礎(chǔ)題例題,能力思維方法,6.已知點P(-2,-2),圓C:(x-1)2+(y+1)2=1,直線l過點P,當斜率為何值時l與圓C有公共點?,能力思維方法,6.已知點P(-2,-2),圓C:(x-1)2+(y+1)2=1,直線l過點P,當斜率為何值時l與圓C有公共點?,能力思維方法,6.已知點P(-2,-2),圓C:(x-1)2+(y+1)2=1,直線l過點P,當斜率為何值時l與圓C有公共點?,能力思維方法,6.已知點P(-2,-2),圓C:(x-1)2+(y+1)2=1,直線l過點P,當斜率為何值時l與圓C有公共點?,.,,(-3,-1),,能力思維方法,6.已知點P(-2,-2),圓C:(x-1)2+(y+1)2=1,直線l過點P,當斜率為何值時l與圓C有公共點?,,.,C,.,,,,(-2,-2),,,θ,只須求斜率不為零的切線斜率k’,能力思維方法,6.已知點P(-2,-2),圓C:(x-1)2+(y+1)2=1,直線l過點P,當斜率為何值時l與圓C有公共點?,.,,(-3,-1),,能力思維方法,7.直線3x+4y+m=0與圓x2+y2-5y=0交于兩點A,B,且OA⊥OB(O為原點),求m的值.,7.直線3x+4y+m=0與圓x2+y2-5y=0交于兩點A,B,且OA⊥OB(O為原點),求m的值.,7.直線3x+4y+m=0與圓x2+y2-5y=0交于兩點A,B,且OA⊥OB(O為原點),求m的值.,解題回顧:解法一利用圓的性質(zhì),解法二是解決直線與二次曲線相交于兩點A,B且滿足OA⊥OB(或AC⊥BC,其中C為已知點)的問題的一般解法。,能力思維方法,8.求通過直線l:2x+y+4=0及圓C:x2+y2+2x-4y+1=0的交點,并且有最小面積的圓的方程.,能力思維方法,- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 直線與圓的位置關(guān)系 直線與圓的位置關(guān)系課件 北師大版必修2 直線 位置 關(guān)系 課件 北師大 必修
鏈接地址:http://ioszen.com/p-11499683.html