八年級數(shù)學上冊 知識點總結 (新版)北師大版
《八年級數(shù)學上冊 知識點總結 (新版)北師大版》由會員分享,可在線閱讀,更多相關《八年級數(shù)學上冊 知識點總結 (新版)北師大版(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第一章 勾股定理 1、勾股定理 直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即 2、勾股定理的逆定理 如果三角形的三邊長a,b,c有關系,那么這個三角形是直角三角形。 3、勾股數(shù):滿足的三個正整數(shù),稱為勾股數(shù)。 第二章 實數(shù) 一、實數(shù)的概念及分類 1、實數(shù)的分類 正有理數(shù) 有理數(shù) 零 有限小數(shù)和無限循環(huán)小數(shù) 實數(shù) 負有理數(shù) 正無理數(shù) 無理數(shù) 無限不循環(huán)小數(shù) 負無理數(shù) 2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。 在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類: (1)開方開不盡的數(shù),如等; (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等; (3)有特定結構的數(shù),如0.1010010001…等; (4)某些三角函數(shù)值,如sin60o等 二、實數(shù)的倒數(shù)、相反數(shù)和絕對值 1、相反數(shù) 實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。 2、絕對值 在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。 3、倒數(shù) 如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。 4、數(shù)軸 規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。 解題時要真正掌握數(shù)形結合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。 5、估算 三、平方根、算數(shù)平方根和立方根 1、算術平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術平方根。特別地,0的算術平方根是0。 表示方法:記作“”,讀作根號a。 性質:正數(shù)和零的算術平方根都只有一個,零的算術平方根是零。 2、平方根:一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。 表示方法:正數(shù)a的平方根記做“”,讀作“正、負根號a”。 性質:一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。 開平方:求一個數(shù)a的平方根的運算,叫做開平方。 注意的雙重非負性: 0 3、立方根 一般地,如果一個數(shù)x的立方等于a,即x3=a那么這個數(shù)x就叫做a 的立方根(或三次方根)。 表示方法:記作 性質:一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。 注意:,這說明三次根號內的負號可以移到根號外面。 四、實數(shù)大小的比較 1、實數(shù)比較大小:正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負數(shù),絕對值大的反而小。 2、實數(shù)大小比較的幾種常用方法 (1)數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。 (2)求差比較:設a、b是實數(shù), (3)求商比較法:設a、b是兩正實數(shù), (4)絕對值比較法:設a、b是兩負實數(shù),則。 (5)平方法:設a、b是兩負實數(shù),則。 五、算術平方根有關計算(二次根式) 1、含有二次根號“”;被開方數(shù)a必須是非負數(shù)。 2、性質: (1) (2) (3) () (4) () 3、運算結果若含有“”形式,必須滿足:(1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;(2)被開方數(shù)中不含能開得盡方的因數(shù)或因式 六、實數(shù)的運算 (1)六種運算:加、減、乘、除、乘方 、開方 (2)實數(shù)的運算順序 先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。 (3)運算律 加法交換律 加法結合律 乘法交換律 乘法結合律 乘法對加法的分配律 第三章 圖形的平移與旋轉 一、平移 1、定義 在平面內,將一個圖形整體沿某方向移動一定的距離,這樣的圖形運動稱為平移。 2、性質 平移前后兩個圖形是全等圖形,對應點連線平行且相等,對應線段平行且相等,對應角相等。 二、旋轉 1、定義 在平面內,將一個圖形繞某一定點沿某個方向轉動一個角度,這樣的圖形運動稱為旋轉,這個定點稱為旋轉中心,轉動的角叫做旋轉角。 2、性質 旋轉前后兩個圖形是全等圖形,對應點到旋轉中心的距離相等,對應點與旋轉中心的連線所成的角等于旋轉角。 第四章 四邊形性質探索 一、四邊形的相關概念 1、四邊形 在同一平面內,由不在同一直線上的四條線段首尾順次相接組成的圖形叫做四邊形。 2、四邊形具有不穩(wěn)定性 3、四邊形的內角和定理及外角和定理 四邊形的內角和定理:四邊形的內角和等于360。 四邊形的外角和定理:四邊形的外角和等于360。 推論:多邊形的內角和定理:n邊形的內角和等于180; 多邊形的外角和定理:任意多邊形的外角和等于360。 6、設多邊形的邊數(shù)為n,則多邊形的對角線共有條。從n邊形的一個頂點出發(fā)能引(n-3)條對角線,將n邊形分成(n-2)個三角形。 二、平行四邊形 1、平行四邊形的定義 兩組對邊分別平行的四邊形叫做平行四邊形。 2、平行四邊形的性質 (1)平行四邊形的對邊平行且相等。 (2)平行四邊形相鄰的角互補,對角相等 (3)平行四邊形的對角線互相平分。 (4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。 常用點:(1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。 (2)推論:夾在兩條平行線間的平行線段相等。 3、平行四邊形的判定 (1)定義:兩組對邊分別平行的四邊形是平行四邊形 (2)定理1:兩組對角分別相等的四邊形是平行四邊形 (3)定理2:兩組對邊分別相等的四邊形是平行四邊形 (4)定理3:對角線互相平分的四邊形是平行四邊形 (5)定理4:一組對邊平行且相等的四邊形是平行四邊形 4、兩條平行線的距離 兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。 平行線間的距離處處相等。 5、平行四邊形的面積 S平行四邊形=底邊長高=ah 三、矩形 1、矩形的定義 有一個角是直角的平行四邊形叫做矩形。 2、矩形的性質 (1)矩形的對邊平行且相等 (2)矩形的四個角都是直角 (3)矩形的對角線相等且互相平分 (4)矩形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到矩形四個頂點的距離相等);對稱軸有兩條,是對邊中點連線所在的直線。 3、矩形的判定 (1)定義:有一個角是直角的平行四邊形是矩形 (2)定理1:有三個角是直角的四邊形是矩形 (3)定理2:對角線相等的平行四邊形是矩形 4、矩形的面積 S矩形=長寬=ab 四、菱形 1、菱形的定義 有一組鄰邊相等的平行四邊形叫做菱形 2、菱形的性質 (1)菱形的四條邊相等,對邊平行 (2)菱形的相鄰的角互補,對角相等 (3)菱形的對角線互相垂直平分,并且每一條對角線平分一組對角 (4)菱形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點(對稱中心到菱形四條邊的距離相等);對稱軸有兩條,是對角線所在的直線。 3、菱形的判定 (1)定義:有一組鄰邊相等的平行四邊形是菱形 (2)定理1:四邊都相等的四邊形是菱形 (3)定理2:對角線互相垂直的平行四邊形是菱形 4、菱形的面積 S菱形=底邊長高=兩條對角線乘積的一半 五、正方形 (3~10分) 1、正方形的定義 有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。 2、正方形的性質 (1)正方形四條邊都相等,對邊平行 (2)正方形的四個角都是直角 (3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角 (4)正方形既是中心對稱圖形又是軸對稱圖形;對稱中心是對角線的交點;對稱軸有四條,是對角線所在的直線和對邊中點連線所在的直線。 3、正方形的判定 判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種: 先證它是矩形,再證它是菱形。 先證它是菱形,再證它是矩形。 4、正方形的面積 設正方形邊長為a,對角線長為b S正方形= 六、梯形 (一) 1、梯形的相關概念 一組對邊平行而另一組對邊不平行的四邊形叫做梯形。 梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。 梯形中不平行的兩邊叫做梯形的腰。 梯形的兩底的距離叫做梯形的高。 2、梯形的判定 (1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。 (2)一組對邊平行且不相等的四邊形是梯形。 (二)直角梯形的定義:一腰垂直于底的梯形叫做直角梯形。 一般地,梯形的分類如下: 一般梯形 梯形 直角梯形 特殊梯形 等腰梯形 (三)等腰梯形 1、等腰梯形的定義 兩腰相等的梯形叫做等腰梯形。 2、等腰梯形的性質 (1)等腰梯形的兩腰相等,兩底平行。 (2)等腰梯形同一底上的兩個角相等,同一腰上的兩個角互補。 (3)等腰梯形的對角線相等。 (4)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。 3、等腰梯形的判定 (1)定義:兩腰相等的梯形是等腰梯形 (2)定理:在同一底上的兩個角相等的梯形是等腰梯形 (3)對角線相等的梯形是等腰梯形。(選擇題和填空題可直接用) (四)梯形的面積 (1)如圖, (2)梯形中有關圖形的面積: ①; ②; ③ 七、有關中點四邊形問題的知識點: (1)順次連接任意四邊形的四邊中點所得的四邊形是平行四邊形; (2)順次連接矩形的四邊中點所得的四邊形是菱形; (3)順次連接菱形的四邊中點所得的四邊形是矩形; (4)順次連接等腰梯形的四邊中點所得的四邊形是菱形; (5)順次連接對角線相等的四邊形四邊中點所得的四邊形是菱形; (6)順次連接對角線互相垂直的四邊形四邊中點所得的四邊形是矩形; (7)順次連接對角線互相垂直且相等的四邊形四邊中點所得的四邊形是正方形; 八、中心對稱圖形 1、 定義 在平面內,一個圖形繞某個點旋轉180,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。 2、性質 (1)關于中心對稱的兩個圖形是全等形。 (2)關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。 (3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。 3、判定 如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。 九、四邊形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的關系圖: 第五章 位置的確定 一、 在平面內,確定物體的位置一般需要兩個數(shù)據(jù)。 二、平面直角坐標系及有關概念 1、平面直角坐標系 在平面內,兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。 2、為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。 注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。 3、點的坐標的概念 對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數(shù)a,b分別叫做點P的橫坐標、縱坐標,有序數(shù)對(a,b)叫做點P的坐標。 點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數(shù)對,當時,(a,b)和(b,a)是兩個不同點的坐標。 平面內點的與有序實數(shù)對是一一對應的。 4、不同位置的點的坐標的特征 (1)、各象限內點的坐標的特征 點P(x,y)在第一象限 點P(x,y)在第二象限 點P(x,y)在第三象限 點P(x,y)在第四象限 (2)、坐標軸上的點的特征 點P(x,y)在x軸上,x為任意實數(shù) 點P(x,y)在y軸上,y為任意實數(shù) 點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)即原點 (3)、兩條坐標軸夾角平分線上點的坐標的特征 點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等 點P(x,y)在第二、四象限夾角平分線上x與y互為相反數(shù) (4)、和坐標軸平行的直線上點的坐標的特征 位于平行于x軸的直線上的各點的縱坐標相同。 位于平行于y軸的直線上的各點的橫坐標相同。 (5)、關于x軸、y軸或原點對稱的點的坐標的特征 點P與點p’關于x軸對稱橫坐標相等,縱坐標互為相反數(shù),即點P(x,y)關于x軸的對稱點為P’(x,-y) 點P與點p’關于y軸對稱縱坐標相等,橫坐標互為相反數(shù),即點P(x,y)關于y軸的對稱點為P’(-x,y) 點P與點p’關于原點對稱橫、縱坐標均互為相反數(shù),即點P(x,y)關于原點的對稱點為P’(-x,-y) (6)、點到坐標軸及原點的距離 點P(x,y)到坐標軸及原點的距離: (1)點P(x,y)到x軸的距離等于 (2)點P(x,y)到y(tǒng)軸的距離等于 (3)點P(x,y)到原點的距離等于 三、坐標變化與圖形變化的規(guī)律: 坐標( x , y )的變化 圖形的變化 x a或 y a 被橫向或縱向拉長(壓縮)為原來的 a倍 x a, y a 放大(縮?。樵瓉淼?a倍 x ( -1)或 y ( -1) 關于 y 軸或 x 軸對稱 x ( -1), y ( -1) 關于原點成中心對稱 x +a或 y+ a 沿 x 軸或 y 軸平移 a個單位 x +a, y+ a 沿 x 軸平移 a個單位,再沿 y 軸平移 a個單位 第六章 一次函數(shù) 一、函數(shù): 一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。 二、自變量取值范圍 使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。 三、函數(shù)的三種表示法及其優(yōu)缺點 (1)關系式(解析)法 兩個變量間的函數(shù)關系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關系式(解析)法。 (2)列表法 把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關系,這種表示法叫做列表法。 (3)圖象法 用圖象表示函數(shù)關系的方法叫做圖象法。 四、由函數(shù)關系式畫其圖像的一般步驟 (1)列表:列表給出自變量與函數(shù)的一些對應值 (2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點 (3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。 五、正比例函數(shù)和一次函數(shù) 1、正比例函數(shù)和一次函數(shù)的概念 一般地,若兩個變量x,y間的關系可以表示成(k,b為常數(shù),k0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。 特別地,當一次函數(shù)中的b=0時(即)(k為常數(shù),k0),稱y是x的正比例函數(shù)。 2、一次函數(shù)的圖像: 所有一次函數(shù)的圖像都是一條直線 3、一次函數(shù)、正比例函數(shù)圖像的主要特征: 一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。 k的符號 B的符號 函數(shù)圖像 圖像特征 k>0 b>0 y 0 x 圖像經(jīng)過一、二、三象限,y隨x的增大而增大。 b<0 y 0 x 圖像經(jīng)過一、三、四象限,y隨x的增大而增大。 K<0 b>0 y 0 x 圖像經(jīng)過一、二、四象限,y隨x的增大而減小 b<0 y 0 x 圖像經(jīng)過二、三、四象限,y隨x的增大而減小。 注:當b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。 4、正比例函數(shù)的性質 一般地,正比例函數(shù)有下列性質: (1)當k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大; (2)當k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。 5、一次函數(shù)的性質 一般地,一次函數(shù)有下列性質: (1)當k>0時,y隨x的增大而增大 (2)當k<0時,y隨x的增大而減小 6、正比例函數(shù)和一次函數(shù)解析式的確定 確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。 7、一次函數(shù)與一元一次方程的關系: 任何一個一元一次方程都可轉化為:kx+b=0(k、b為常數(shù),k≠0)的形式. 而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同. 結論:由于任何一元一次方程都可轉化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉化為:當一次函數(shù)值為0時,求相應的自變量的值. 從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值. 第七章 二元一次方程組 1、二元一次方程 含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。 2、二元一次方程的解 適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。 3、二元一次方程組 含有兩個未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。 4二元一次方程組的解 二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。 5、二元一次方程組的解法 (1)代入(消元)法(2)加減(消元)法 6、一次函數(shù)與二元一次方程(組)的關系: (1)一次函數(shù)與二元一次方程的關系: 直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx- y+b=0的解 (2)一次函數(shù)與二元一次方程組的關系: 二元一次方程組 的解可看作兩個一次函數(shù) 和 的圖象的交點。 當函數(shù)圖象有交點時,說明相應的二元一次方程組有解;當函數(shù)圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。 第八章 數(shù)據(jù)的代表 1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù) 、眾數(shù)、中位數(shù) 2、平均數(shù) (1)平均數(shù):一般地,對于n個數(shù)我們把叫做這n個數(shù)的算術平均數(shù),簡稱平均數(shù),記為。 (2)加權平均數(shù): 3、眾數(shù) 一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。 4、中位數(shù) 一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 八年級數(shù)學上冊 知識點總結 新版北師大版 年級 數(shù)學 上冊 知識點 總結 新版 北師大
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://ioszen.com/p-11909787.html