高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 學(xué)業(yè)分層測評13 用數(shù)學(xué)歸納法證明不等式舉例 新人教A版選修4-5
《高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 學(xué)業(yè)分層測評13 用數(shù)學(xué)歸納法證明不等式舉例 新人教A版選修4-5》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 學(xué)業(yè)分層測評13 用數(shù)學(xué)歸納法證明不等式舉例 新人教A版選修4-5(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
【課堂新坐標(biāo)】2016-2017學(xué)年高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 學(xué)業(yè)分層測評13 用數(shù)學(xué)歸納法證明不等式舉例 新人教A版選修4-5 (建議用時(shí):45分鐘) [學(xué)業(yè)達(dá)標(biāo)] 一、選擇題 1.設(shè)f(x)是定義在正整數(shù)集上的函數(shù),且f(x)滿足:當(dāng)f(k)≥k2成立時(shí),總可推出f(k+1)≥(k+1)2成立.那么下列命題總成立的是( ) A.若f(3)≥9成立,則當(dāng)k≥1時(shí),均有f(k)≥k2成立 B.若f(5)≥25成立,則當(dāng)k≤5時(shí),均有f(k)≥k2成立 C.若f(7)<49成立,則當(dāng)k≥8時(shí),均有f(k)<k2成立 D.若f(4)=25成立,則當(dāng)k≥4時(shí),均有f(k)≥k2成立 【解析】 根據(jù)題中條件可知:由f(k)≥k2,必能推得f(k+1)≥(k+1)2,但反之不成立,因?yàn)镈中f(4)=25>42,故可推得k≥4時(shí),f(k)≥k2,故只有D正確. 【答案】 D 2.用數(shù)學(xué)歸納法證明“對于任意x>0和正整數(shù)n,都有xn+xn-2+xn-4+…+++≥n+1”時(shí),需驗(yàn)證的使命題成立的最小正整數(shù)值n0應(yīng)為( ) A.n0=1 B.n0=2 C.n0=1,2 D.以上答案均不正確 【解析】 需驗(yàn)證:n0=1時(shí),x+≥1+1成立. 【答案】 A 3.利用數(shù)學(xué)歸納法證明不等式1+++…+- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 第四講 數(shù)學(xué)歸納法證明不等式 學(xué)業(yè)分層測評13 用數(shù)學(xué)歸納法證明不等式舉例 新人教A版選修4-5 第四 數(shù)學(xué) 歸納法 證明 不等式 學(xué)業(yè) 分層 測評 13 舉例 新人 選修


鏈接地址:http://ioszen.com/p-11974455.html