廣西2020版高考數(shù)學一輪復習 考點規(guī)范練28 數(shù)列的概念與表示 文

上傳人:Sc****h 文檔編號:119965441 上傳時間:2022-07-16 格式:DOCX 頁數(shù):6 大?。?.93MB
收藏 版權申訴 舉報 下載
廣西2020版高考數(shù)學一輪復習 考點規(guī)范練28 數(shù)列的概念與表示 文_第1頁
第1頁 / 共6頁
廣西2020版高考數(shù)學一輪復習 考點規(guī)范練28 數(shù)列的概念與表示 文_第2頁
第2頁 / 共6頁
廣西2020版高考數(shù)學一輪復習 考點規(guī)范練28 數(shù)列的概念與表示 文_第3頁
第3頁 / 共6頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《廣西2020版高考數(shù)學一輪復習 考點規(guī)范練28 數(shù)列的概念與表示 文》由會員分享,可在線閱讀,更多相關《廣西2020版高考數(shù)學一輪復習 考點規(guī)范練28 數(shù)列的概念與表示 文(6頁珍藏版)》請在裝配圖網上搜索。

1、考點規(guī)范練28 數(shù)列的概念與表示 一、基礎鞏固 1.數(shù)列1,23,35,47,59,…的一個通項公式an=(  )                     A.n2n+1 B.n2n-1 C.n2n-3 D.n2n+3 答案B 2.若Sn為數(shù)列{an}的前n項和,且Sn=nn+1,則1a5等于(  ) A.56 B.65 C.130 D.30 答案D 解析當n≥2時,an=Sn-Sn-1=nn+1-n-1n=1n(n+1), 則1a5=5×(5+1)=30. 3.已知數(shù)列{an}滿足an+1+an=n,若a1=2,則a4-a2=(  ) A.4 B.3 C.2 D.1

2、 答案D 解析由an+1+an=n,得an+2+an+1=n+1,兩式相減得an+2-an=1,令n=2,得a4-a2=1. 4.數(shù)列{an}的前n項和為Sn=n2,若bn=(n-10)an,則數(shù)列{bn}的最小項為(  ) A.第10項 B.第11項 C.第6項 D.第5項 答案D 解析由Sn=n2,得當n=1時,a1=1, 當n≥2時,an=Sn-Sn-1=n2-(n-1)2=2n-1, 當n=1時顯然適合上式,所以an=2n-1, 所以bn=(n-10)an=(n-10)(2n-1). 令f(x)=(x-10)(2x-1), 易知其圖象的對稱軸為x=514, 所以數(shù)

3、列{bn}的最小項為第5項. 5.已知數(shù)列{an}滿足an+2=an+1-an,且a1=2,a2=3,Sn為數(shù)列{an}的前n項和,則S2 016的值為(  ) A.0 B.2 C.5 D.6 答案A 解析∵an+2=an+1-an,a1=2,a2=3, ∴a3=a2-a1=1,a4=a3-a2=-2,a5=a4-a3=-3,a6=a5-a4=-1,a7=a6-a5=2,a8=a7-a6=3…. ∴數(shù)列{an}是周期為6的周期數(shù)列. 又2016=6×336, ∴S2016=336×(2+3+1-2-3-1)=0,故選A. 6.設數(shù)列2,5,22,11,…,則41是這個數(shù)列的第

4、     項.? 答案14 解析由已知,得數(shù)列的通項公式為an=3n-1. 令3n-1=41,解得n=14,即為第14項. 7.已知數(shù)列{an}滿足:a1+3a2+5a3+…+(2n-1)·an=(n-1)·3n+1+3(n∈N*),則數(shù)列{an}的通項公式an=     .? 答案3n 解析a1+3a2+5a3+…+(2n-3)·an-1+(2n-1)·an=(n-1)·3n+1+3,把n換成n-1,得a1+3a2+5a3+…+(2n-3)·an-1=(n-2)·3n+3,兩式相減得an=3n. 8.已知數(shù)列{an}的通項公式為an=(n+2)78n,則當an取得最大值時,n=

5、     .? 答案5或6 解析由題意令an≥an-1,an≥an+1, ∴(n+2)78n≥(n+1)78n-1,(n+2)78n≥(n+3)78n+1, 解得n≤6,n≥5.∴n=5或n=6. 9.設數(shù)列{an}是首項為1的正項數(shù)列,且(n+1)an+12-nan2+an+1·an=0,則它的通項公式an=     .? 答案1n 解析∵(n+1)an+12-nan2+an+1·an=0, ∴(n+1)an+1-nanan+1+an=0. ∵{an}是首項為1的正項數(shù)列,∴(n+1)an+1=nan, 即an+1an=nn+1,∴an=anan-1·an-1an-2·…

6、·a2a1·a1=n-1n·n-2n-1·…·12·1=1n. 10.已知數(shù)列{an}的前n項和為Sn. (1)若Sn=(-1)n+1·n,求a5+a6及an; (2)若Sn=3n+2n+1,求an. 解(1)因為Sn=(-1)n+1·n, 所以a5+a6=S6-S4=(-6)-(-4)=-2. 當n=1時,a1=S1=1; 當n≥2時,an=Sn-Sn-1=(-1)n+1·n-(-1)n·(n-1) =(-1)n+1·[n+(n-1)]=(-1)n+1·(2n-1). 又a1也適合于此式,所以an=(-1)n+1·(2n-1). (2)當n=1時,a1=S1=6; 當n

7、≥2時,an=Sn-Sn-1=(3n+2n+1)-[3n-1+2(n-1)+1] =2·3n-1+2.① 因為a1不適合①式,所以an=6,n=1,2·3n-1+2,n≥2. 二、能力提升 11.設數(shù)列{an}滿足a1=1,a2=3,且2nan=(n-1)an-1+(n+1)an+1,則a20的值是(  ) A.415 B.425 C.435 D.445 答案D 解析由2nan=(n-1)an-1+(n+1)an+1, 得nan-(n-1)an-1=(n+1)an+1-nan=2a2-a1=5. 令bn=nan,則數(shù)列{bn}是公差為5的等差數(shù)列, 故bn=1+(n-1)×

8、5=5n-4. 所以b20=20a20=5×20-4=96, 所以a20=9620=445. 12.已知函數(shù)f(x)是定義在區(qū)間(0,+∞)內的單調函數(shù),且對任意的正數(shù)x,y都有f(xy)=f(x)+f(y).若數(shù)列{an}的前n項和為Sn,且滿足f(Sn+2)-f(an)=f(3)(n∈N*),則an等于(  ) A.2n-1 B.n C.2n-1 D.32n-1 答案D 解析由題意知f(Sn+2)=f(an)+f(3)=f(3an)(n∈N*), ∴Sn+2=3an,Sn-1+2=3an-1(n≥2), 兩式相減,得2an=3an-1(n≥2). 又當n=1時,S1+2=

9、3a1=a1+2,∴a1=1. ∴數(shù)列{an}是首項為1,公比為32的等比數(shù)列. ∴an=32n-1. 13.已知數(shù)列{an}的前n項和為Sn,Sn=2an-n,則an=     .? 答案2n-1 解析當n≥2時,an=Sn-Sn-1=2an-n-2an-1+(n-1), 即an=2an-1+1∴an+1=2(an-1+1). 又S1=2a1-1,∴a1=1. ∴數(shù)列{an+1}是以a1+1=2為首項,公比為2的等比數(shù)列, ∴an+1=2·2n-1=2n,∴an=2n-1. 14.已知{an}滿足an+1=an+2n,且a1=32,則ann的最小值為     .? 答案

10、313 解析∵an+1=an+2n,即an+1-an=2n, ∴an=an-an-1+(an-1-an-2)+…+a2-a1+a1=2(n-1)+2(n-2)+…+2×1+32=2×(1+n-1)(n-1)2+32=n2-n+32. ∴ann=n+32n-1. 令f(x)=x+32x-1(x≥1),則f'(x)=1-32x2=x2-32x2. ∴f(x)在1,42內單調遞減,在42,+∞內單調遞增. 又f(5)=5+325-1=525,f(6)=6+326-1=313

11、),an+1=Sn+3n,n∈N*,bn=Sn-3n. (1)求數(shù)列{bn}的通項公式; (2)若an+1≥an,求a的取值范圍. 解(1)因為an+1=Sn+3n,所以Sn+1-Sn=an+1=Sn+3n, 即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n), 即bn+1=2bn. 又b1=S1-3=a-3, 故{bn}的通項公式為bn=(a-3)2n-1. (2)由題意可知,a2>a1對任意的a都成立. 由(1)知Sn=3n+(a-3)2n-1. 于是,當n≥2時, an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2 =2

12、×3n-1+(a-3)2n-2, 故an+1-an=4×3n-1+(a-3)2n-2 =2n-21232n-2+a-3. 當n≥2時,由an+1≥an,可知1232n-2+a-3≥0,即a≥-9. 又a≠3,故所求的a的取值范圍是[-9,3)∪(3,+∞). 三、高考預測 16.已知數(shù)列{an}的通項公式是an=-n2+12n-32,其前n項和是Sn,則對任意的n>m(其中m,n∈N*),Sn-Sm的最大值是     .? 答案10 解析由an=-n2+12n-32=-(n-4)·(n-8)>0得4

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!