(浙江專用)2020版高考數(shù)學大一輪復習 第八章 立體幾何 考點規(guī)范練41 立體幾何中的向量方法
《(浙江專用)2020版高考數(shù)學大一輪復習 第八章 立體幾何 考點規(guī)范練41 立體幾何中的向量方法》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2020版高考數(shù)學大一輪復習 第八章 立體幾何 考點規(guī)范練41 立體幾何中的向量方法(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、考點規(guī)范練41 立體幾何中的向量方法 基礎(chǔ)鞏固組 1.已知平面α內(nèi)有一點M(1,-1,2),平面α的一個法向量為n=(6,-3,6),則下列點P中,在平面α內(nèi)的是( ) A.P(2,3,3) B.P(-2,0,1) C.P(-4,4,0) D.P(3,-3,4) 答案A 解析逐一驗證法,對于選項A,MP=(1,4,1), ∴MP·n=6-12+6=0,∴MP⊥n, ∴點P在平面α內(nèi),同理可驗證其他三個點不在平面α內(nèi). 2.如圖,F是正方體ABCD-A1B1C1D1的棱CD的中點.E是BB1上一點,若D1F⊥DE,則有( )
2、A.B1E=EB B.B1E=2EB C.B1E=12EB D.E與B重合 答案A 解析分別以DA,DC,DD1為x,y,z軸建立空間直角坐標系,設(shè)正方形的邊長為2,則D(0,0,0),F(0,1,0),D1(0,0,2),設(shè)E(2,2,z),D1F=(0,1,-2),DE=(2,2,z),∵D1F·DE=0×2+1×2-2z=0,∴z=1,∴B1E=EB. 3. 如圖所示,在正方體ABCD-A1B1C1D1中,棱長為a,M,N分別為A1B和AC上的點,A1M=AN=2a3,則MN與平面BB1C1C的位置關(guān)系是( ) A.相交 B.平行 C.垂直 D.不能確定 答案B
3、 解析分別以C1B1,C1D1,C1C所在直線為x,y,z軸,建立空間直角坐標系,如圖, ∵A1M=AN=23a,則Ma,23a,a3,N2a3,2a3,a, ∴MN=-a3,0,23a.又C1(0,0,0),D1(0,a,0), ∴C1D1=(0,a,0), ∴MN·C1D1=0,∴MN⊥C1D1.∵C1D1是平面BB1C1C的法向量,且MN?平面BB1C1C, ∴MN∥平面BB1C1C. 4. 在直三棱柱ABC-A1B1C1中,若BC⊥AC,∠A=π3,AC=4,AA1=4,M為AA1的中點,P為BM的中點,Q在線段CA1上,A1Q=3QC,則異面直線PQ與AC所成角
4、的正弦值為( )
A.3913 B.21313 C.23913 D.1313
答案C
解析以C為原點,CB所在直線為x軸,CA所在直線為y軸,CC1所在直線為z軸,建立空間直角坐標系,則由題意得A(0,4,0),C(0,0,0),B(43,0,0),M(0,4,2),A1(0,4,4),P(23,2,1),
則CQ=14CA1=14(0,4,4)=(0,1,1),∴Q(0,1,1),AC=(0,-4,0),PQ=(-23,-1,0).設(shè)異面直線PQ與AC所成角為θ,cosθ=|cos
5、32=23913,選C. 5.已知平面α,β的法向量分別為μ=(-2,3,-5),v=(3,-1,4),則( ) A.α∥β B.α⊥β C.α,β相交但不垂直 D.以上都不正確 答案C 解析∵-23≠3-1≠-54,∴μ與v不是共線向量. 又∵μ·v=-2×3+3×(-1)+(-5)×4=-29≠0, ∴μ與v不垂直.∴平面α與平面β相交但不垂直. 6.在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動,則直線D1E與A1D所成角的大小是 ,若D1E⊥EC,則AE= .? 答案90° 1 解析以D為原點,DA為x軸,DC
6、為y軸,DD1為z軸,建立空間直角坐標系,∵AD=AA1=1,AB=2,點E在棱AB上移動,∴D(0,0,0),D1(0,0,1),A(1,0,0),A1(1,0,1),C(0,2,0), 設(shè)E(1,m,0),0≤m≤2,則D1E=(1,m,-1),A1D=(-1,0,-1), ∴D1E·A1D=-1+0+1=0. ∴直線D1E與A1D所成角的大小是90°. ∵D1E=(1,m,-1),EC=(-1,2-m,0),D1E⊥EC, ∴D1E·EC=-1+m(2-m)+0=0, 解得m=1.∴AE=1. 7.在長方體ABCD-A1B1C1D1中,AB=2,BC=AA1=1,則D1
7、C1與平面A1BC1所成角的正弦值為 .?
答案13
解析以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,設(shè)n=(x,y,z)為平面A1BC1的法向量,
則n·A1B=0,n·A1C1=0,即2y-z=0,-x+2y=0,令z=2,則y=1,x=2,于是n=(2,1,2),D1C1=(0,2,0).設(shè)所求線面角為α,則sinα=|cos
8、0,0),D(0,1,0),P(0,0,1),由題意,AD⊥平面PAB,設(shè)E為PD的中點,連接AE,則AE⊥PD,又CD⊥平面PAD,∴CD⊥AE,從而AE⊥平面PCD.
∴AD=(0,1,0),AE=0,12,12分別是平面PAB、平面PCD的法向量,且
9、 答案B 解析以D點為坐標原點,以DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,設(shè)正方體棱長為1, 則A1(1,0,1),D(0,0,0),A(1,0,0),C(0,1,0),E13,0,13,F23,13,0,B(1,1,0),D1(0,0,1), A1D=(-1,0,-1),AC=(-1,1,0), EF=13,13,-13,BD1=(-1,-1,1), EF=-13BD1,A1D·EF=AC·EF=0, 從而EF∥BD1,EF⊥A1D,EF⊥AC.故選B. 10.在直三棱柱A1B1C1-ABC中,∠BAC=π2,AB=AC=AA1=1,已知G和E分
10、別為A1B1和CC1的中點,D與F分別為線段AC和AB上的動點(不包括端點),若GD⊥EF,則線段DF的長度的取值范圍為( ) A.55,1 B.55,1 C.255,1 D.255,1 答案A 解析建立如圖所示的空間直角坐標系,則A(0,0,0),E0,1,12,G12,0,1,F(x,0,0),D(0,y,0). 由于GD⊥EF,所以x+2y-1=0y∈0,12, DF=x2+y2=5y-252+15. 當y=25時,線段DF長度的最小值是55; 當y=0時,線段DF長度的最大值是1. 而不包括端點,故y=0不能取.故選A. 11.已知斜四棱柱ABCD-A1B1C
11、1D1的各棱長均為2,∠A1AD=60°,∠BAD=90°,平面A1ADD1⊥平面ABCD,則直線BD1與平面ABCD所成的角的正切值為( ) A.34 B.134 C.3913 D.393 答案C 解析取AD中點O,連接OA1,易證A1O⊥平面ABCD.建立如圖所示的空間直角坐標系, 得B(2,-1,0),D1(0,2,3),BD1=(-2,3,3),平面ABCD的一個法向量為n=(0,0,1),設(shè)BD1與平面ABCD所成的角為θ, ∴sinθ=|BD1·n||BD1||n|=34,∴tanθ=3913. 12. 如圖,在棱長為1的正方體ABCD-A1B1C1D1中,
12、P,Q分別是線段CC1,BD上的點,R是直線AD上的點,滿足PQ∥平面ABC1D1,PQ⊥RQ,且P,Q不是正方體的頂點,則|PR|的最小值是( ) A.426 B.305 C.52 D.233 答案B 解析如圖,分別以AB,AD,AA1所在直線為x,y,z軸,建立空間直角坐標系, 則B(1,0,0),D(0,1,0),B1(1,0,1),C(1,1,0), 設(shè)P(1,1,m)(0≤m≤1),BQBD=λ(0≤λ≤1),Q(x0,y0,0), 則(x0-1,y0,0)=λ(-1,1,0),∴x0=1-λ,y0=λ, ∴Q(1-λ,λ,0),∴PQ=(-λ,λ-1,-m).
13、 連接B1C,∵正方體ABCD-A1B1C1D1中,BCC1B1是正方形,AB⊥平面BCC1B1, ∴B1C⊥AB,B1C⊥BC1, 又AB∩BC1=B, ∴B1C⊥平面ABC1D1, ∵PQ∥平面ABC1D1, ∴B1C⊥PQ, 又B1C=(0,1,-1),∴B1C·PQ=λ-1+m=0,∴λ=1-m, ∴Q(m,1-m,0),PQ=(m-1,-m,-m), 設(shè)R(0,n,0),則RQ=(m,1-m-n,0), ∵PQ⊥RQ,∴PQ·RQ=m(m-1)-m(1-m-n)=0,即n=2-2m,∴R(0,2-2m,0),PR=(-1,1-2m,-m), |PR|=1+(1-2
14、m)2+m2=5m2-4m+2=5m-252+65, ∴當m=25時,|PR|的最小值是305.故選B. 13. 如圖,矩形CDEF所在的平面與矩形ABCD所在的平面垂直,AD=2,DE=3,AB=4,EF=4EG,點M在線段GF上(包括兩端點),點N在線段AB上,且GM=AN,則二面角M-DN-C的平面角的取值范圍為( ) A.[30°,45°] B.[45°,60°] C.[30°,90°) D.[60°,90°) 答案B 解析如圖建立空間直角坐標系,則由條件知A(2,0,0),G(0,1,3),M(0,t,3)(1≤t≤4), 由GM=AN可設(shè)N(2,t-1,0
15、),則平面DNC的法向量為m=(0,0,1),設(shè)平面MDN的法向量為n=(x,y,z),由n·DM=0,n·DN=0,得ty+3z=0,2x+(t-1)y=0,令z=2t,則n=(3(t-1),-6,2t),cos
16、 答案2 解析如圖,∵二面角α-l-β等于120°, ∴CA與BD的夾角為60°. 由題設(shè)知,CA⊥AB,AB⊥BD,|AB|=|AC|=|BD|=1,|CD|2=|CA+AB+BD|2=|CA|2+|AB|2+|BD|2+2CA·AB+2AB·BD+2CA·BD=3+2×cos60°=4,∴|CD|=2. 15. (2018浙江寧波)已知棱長為1的正方體ABCD-A1B1C1D1中,點E為側(cè)面BB1C1C中點,點F在棱AD上運動,正方體表面上有一點P滿足D1P=xD1F+yD1E(x≥0,y≥0),則所有滿足條件的點P構(gòu)成圖形的面積為 .? 答案118 解析由D
17、1P=xD1F+yD1E(x≥0,y≥0)得點P在以射線D1F,D1E為角的兩邊的平面內(nèi),又因為點P在正方體的表面上,所以點P所在的圖形為點F由點A運動到點D的過程中,以射線D1F,D1E為角的兩邊的平面與正方體的側(cè)面的交線構(gòu)成的區(qū)域.設(shè)棱BC的中點為N,則由圖易得點P構(gòu)成的圖形為△D1DA、直角梯形ABND和△ENB,則所求面積為12×1×1+1+122×1+12×12×12=118. 16.三棱柱ABC-A1B1C1的底是邊長為1的正三角形,高AA1=1,在AB上取一點P,設(shè)△PA1C1與面A1B1C1所成的二面角為α,△PB1C1與面A1B1C1所成的二面角為β,則tan(α+β)的最
18、小值是 .? 答案-8313 解析作PP1⊥A1B1,則PP1是三棱柱的高,過P1作P1H⊥A1C1,則∠PHP1=α, 設(shè)AP=x,BP=1-x(0≤x≤1),tanα=23x,同理tanβ=23(1-x), tan(α+β)=233x(1-x)-4≥-8313當x=12時取等號. 17. 如圖,在幾何體SABCD中,AD⊥平面SCD,BC∥AD,AD=DC=2,BC=1,又SD=2,∠SDC=120°,F是SA的中點,E在SC上,AE=5. (1)求證:EF∥平面ABCD; (2)求直線SE與平面SAB所成角的正弦值. (1)證明連接AE,DE,AC,
19、∵AD⊥平面SCD,DE?平面SCD, ∴AD⊥DE, ∴DE=AE2-AD2=1, 又∵CD=SD=2,∠SDC=120°, ∴E是SC的中點,又F是SA的中點, ∴EF∥AC,又EF?平面ABCD,AC?平面ABCD, ∴EF∥平面ABCD. (2)解在平面SCD內(nèi)過點D作SD的垂線交SC于M, 以D為原點,以DM為x軸,DS為y軸,DA為z軸建立空間直角坐標系D-xyz, ∴D(0,0,0),S(0,2,0),A(0,0,2),C(3,-1,0),B(3,-1,1),∴SC=(3,-3,0),SA=(0,-2,2),SB=(3,-3,1), 設(shè)平面SAB的法向量為
20、n=(x,y,z),則n·SA=0,n·SB=0,
∴-2y+2z=0,3x-3y+z=0,令z=1得n=233,1,1,
∴cos
21、1的值;若不存在,說明理由. (1)證明取AB的中點O,連接OD,OB1.因為B1B=B1A,所以O(shè)B1⊥AB.又AB⊥B1D,OB1∩B1D=B1,OB1?平面B1OD,B1D?平面B1OD,所以AB⊥平面B1OD. 因為OD?平面B1OD,所以AB⊥OD. 由已知條件知,BC⊥BB1, 又OD∥BC,所以O(shè)D⊥BB1. 因為AB∩BB1=B,AB?平面ABB1A1,BB1?平面ABB1A1,所以O(shè)D⊥平面ABB1A1. 因為OD?平面ABC,所以平面ABB1A1⊥平面ABC. (2)解由(1)知OB,OD,OB1兩兩垂直,所以以O(shè)為坐標原點,OB,OD,OB1的方向分別為
22、x軸、y軸、z軸的正方向,|OB|為單位長度1,建立如圖所示的空間直角坐標系,連接B1C. 由題設(shè)知,B1(0,0,3),B(1,0,0),D(0,1,0),A(-1,0,0),C(1,2,0),C1(0,2,3), ∴B1D=(0,1,-3),B1B=(1,0,-3),CC1=(-1,0,3), B1C=(1,2,-3),設(shè)CE=λCC1(0<λ<1), 則B1E=B1C+CE=(1-λ,2,3(λ-1)),設(shè)平面BB1D的法向量為m=(x1,y1,z1), 則m·B1D=0,m·B1B=0,得y1-3z1=0,x1-3z1=0, 令z1=1,則x1=y1=3, 所以平面BB1D的法向量為m=(3,3,1). 設(shè)平面B1DE的法向量為n=(x2,y2,z2), 則n·B1D=0,n·B1E=0,得y2-3z2=0,(1-λ)x2+2y2+3(λ-1)z2=0, 令z2=1,則x2=3(λ+1)λ-1,y2=3, 所以平面B1DE的一個法向量n=3(λ+1)λ-1,3,1. 設(shè)二面角E-B1D-B的大小為θ, 則cosθ=m·n|m||n|=3λ+3λ-1+3+17·3λ+1λ-12+4=-714, 解得λ=13.所以在線段CC1上存在點E,使得二面角E-B1D-B的余弦值為-714,此時CECC1=13. 10
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。