(山東專用)2020年高考數(shù)學一輪復(fù)習 專題15 導(dǎo)數(shù)的應(yīng)用(3)綜合應(yīng)用(含解析)
《(山東專用)2020年高考數(shù)學一輪復(fù)習 專題15 導(dǎo)數(shù)的應(yīng)用(3)綜合應(yīng)用(含解析)》由會員分享,可在線閱讀,更多相關(guān)《(山東專用)2020年高考數(shù)學一輪復(fù)習 專題15 導(dǎo)數(shù)的應(yīng)用(3)綜合應(yīng)用(含解析)(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題15 導(dǎo)數(shù)的應(yīng)用(3)—綜合應(yīng)用 一、【知識精講】 函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系 函數(shù)y=f(x)在某個區(qū)間內(nèi)可導(dǎo),則: (1)若f′(x)>0,則f(x)在這個區(qū)間內(nèi)單調(diào)遞增; (2)若f′(x)<0,則f(x)在這個區(qū)間內(nèi)單調(diào)遞減; (3)若f′(x)=0,則f(x)在這個區(qū)間內(nèi)是常數(shù)函數(shù). 注意:函數(shù)f(x)在區(qū)間(a,b)上遞增,則f′(x)≥0,“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上單調(diào)遞增”的充分不必要條件. 二、【典例精練】 考點一 構(gòu)造函數(shù)證明不等式 【例1】 已知函數(shù)f(x)=1-,g(x)=x-ln x. (1)證明:g(x)
2、≥1;
(2)證明:(x-ln x)f(x)>1-.
證明 (1)由題意得g′(x)=(x>0),
當0
3、以(x-ln x)f(x)>1-.
【解法小結(jié)】 1.證明不等式的基本方法:
(1)利用單調(diào)性:若f(x)在[a,b]上是增函數(shù),則①?x∈[a,b],有f(a)≤f(x)≤f(b),②?x1,x2∈[a,b],且x1
4、,則f(x)>g(x)”證明不等式 【例2】 已知函數(shù)f(x)=xln x-ax. (1)當a=-1時,求函數(shù)f(x)在(0,+∞)上的最值; (2)證明:對一切x∈(0,+∞),都有l(wèi)n x+1>-成立. 【解析】(1)解 函數(shù)f(x)=xln x-ax的定義域為(0,+∞). 當a=-1時,f(x)=xln x+x,f′(x)=ln x+2. 由f′(x)=0,得x=. 當x∈時,f′(x)<0;當x>時,f′(x)>0. 所以f(x)在上單調(diào)遞減,在上單調(diào)遞增. 因此f(x)在x=處取得最小值,即f(x)min=f=-,但f(x)在(0,+∞)上無最大值. (2)證明
5、 當x>0時,ln x+1>-等價于x(ln x+1)>-. 由(1)知a=-1時,f(x)=xln x+x的最小值是-,當且僅當x=時取等號. 設(shè)G(x)=-,x∈(0,+∞), 則G′(x)=,易知G(x)max=G(1)=-, 當且僅當x=1時取到,從而可知對一切x∈(0,+∞),都有f(x)>G(x),即ln x+1>-. 【解法小結(jié)】 1.在證明不等式中,若無法轉(zhuǎn)化為一個函數(shù)的最值問題,則可考慮轉(zhuǎn)化為兩個函數(shù)的最值問題. 2.在證明過程中,等價轉(zhuǎn)化是關(guān)鍵,此處f(x)min>g(x)max恒成立.從而f(x)>g(x),但此處f(x)與g(x)取到最值的條件不是同一個“x
6、的值”.
考點三 不等式恒成立或有解問題
角度1 不等式恒成立求參數(shù)
【例3-1】 已知函數(shù)f(x)=(x≠0).
(1)判斷函數(shù)f(x)在區(qū)間上的單調(diào)性;
(2)若f(x)
7、ax<0恒成立.
令φ(x)=sin x-ax,x∈,
則φ′(x)=cos x-a,且φ(0)=0.
當a≥1時,在區(qū)間上φ′(x)<0,即函數(shù)φ(x)單調(diào)遞減,
所以φ(x)<φ(0)=0,故sin x-ax<0恒成立.
當00,故φ(x)在區(qū)間(0,x0)上單調(diào)遞增,且φ(0)=0,
從而φ(x)在區(qū)間(0,x0)上大于零,這與sin x-ax<0恒成立相矛盾.
當a≤0時,在區(qū)間上φ′(x)>0,即函數(shù)φ(x)單調(diào)遞增,且φ(0)=0,得sin x-ax>0恒成立,這與 8、sin x-ax<0恒成立相矛盾.
故實數(shù)a的最小值為1.
【解法小結(jié)】 1.破解此類題需“一形一分類”,“一形”是指會結(jié)合函數(shù)的圖象,對函數(shù)進行求導(dǎo),然后判斷其極值,從而得到含有參數(shù)的方程組,解方程組,即可求出參數(shù)的值;“一分類”是指對不等式恒成立問題,常需對參數(shù)進行分類討論,求出參數(shù)的取值范圍.
2.利用導(dǎo)數(shù)研究含參數(shù)的不等式問題,若能夠分離參數(shù),則常將問題轉(zhuǎn)化為形如a≥f(x)(或a≤f(x))的形式,通過求函數(shù)y=f(x)的最值求得參數(shù)范圍.
角度2 不等式能成立求參數(shù)的取值范圍
【例3-2】 已知函數(shù)f(x)=x2-(2a+1)x+aln x(a∈R).
(1)若f(x) 9、在區(qū)間[1,2]上是單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)函數(shù)g(x)=(1-a)x,若?x0∈[1,e]使得f(x0)≥g(x0)成立,求實數(shù)a的取值范圍.
【解析】 (1)f′(x)=,當導(dǎo)函數(shù)f′(x)的零點x=a落在區(qū)間(1,2)內(nèi)時,函數(shù)f(x)在區(qū)間[1,2]上就不是單調(diào)函數(shù),即a?(1,2),
所以實數(shù)a的取值范圍是(-∞,1]∪[2,+∞).
(2)由題意知,不等式f(x)≥g(x)在區(qū)間[1,e]上有解,
即x2-2x+a(ln x-x)≥0在區(qū)間[1,e]上有解.
因為當x∈[1,e]時,ln x≤1≤x(不同時取等號),x-ln x>0,
所以a≤在區(qū)間[1 10、,e]上有解.
令h(x)=,則h′(x)=.
因為x∈[1,e],所以x+2>2≥2ln x,
所以h′(x)≥0,h(x)在[1,e]上單調(diào)遞增,
所以x∈[1,e]時,h(x)max=h(e)=,
所以a≤,
所以實數(shù)a的取值范圍是.
【解法小結(jié)】 1.含參數(shù)的能成立(存在型)問題的解題方法
a≥f(x)在x∈D上能成立,則a≥f(x)min;
a≤f(x)在x∈D上能成立,則a≤f(x)max.
2.含全稱、存在量詞不等式能成立問題
(1)存在x1∈A,任意x2∈B使f(x1)≥g(x2)成立,則f(x)max≥g(x)max;(2)任意x1∈A,存在x2∈B,使 11、f(x1)≥g(x2)成立,則f(x)min≥g(x)min.
考點四 判斷零點的個數(shù)
【例4】(2019全國卷Ⅰ)已知函數(shù),為的導(dǎo)數(shù).證明:
(1)在區(qū)間存在唯一極大值點;
(2)有且僅有2個零點.
【解析】(1)設(shè),則,.
當時,單調(diào)遞減,而,
可得在有唯一零點,設(shè)為.
則當時,;當時,.
所以在單調(diào)遞增,在單調(diào)遞減,故在存在唯一極大值點,即在存在唯一極大值點.
(2)的定義域為.
(i)當時,由(1)知,在單調(diào)遞增,而,所以當時,,故在單調(diào)遞減,又,從而是在的唯一零點.
(ii)當時,由(1)知,在單調(diào)遞增,在單調(diào)遞減,而,,所以存在,使得,且當時,;當時,.故在 12、單調(diào)遞增,在單調(diào)遞減.
又,,所以當時,.
從而在沒有零點.
(iii)當時,,所以在單調(diào)遞減.而,,所以在有唯一零點.
(iv)當時,,所以<0,從而在沒有零點.
綜上,有且僅有2個零點.
【解法小結(jié)】 利用導(dǎo)數(shù)確定函數(shù)零點或方程根個數(shù)的常用方法
(1)構(gòu)建函數(shù)g(x)(要求g′(x)易求,g′(x)=0可解),轉(zhuǎn)化確定g(x)的零點個數(shù)問題求解,利用導(dǎo)數(shù)研究該函數(shù)的單調(diào)性、極值,并確定定義區(qū)間端點值的符號(或變化趨勢)等,畫出g(x)的圖象草圖,數(shù)形結(jié)合求解函數(shù)零點的個數(shù).
(2)利用零點存在性定理:先用該定理判斷函數(shù)在某區(qū)間上有零點,然后利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值(最 13、值)及區(qū)間端點值符號,進而判斷函數(shù)在該區(qū)間上零點的個數(shù).
考點五 已知函數(shù)零點個數(shù)求參數(shù)的取值范圍
【例5】(2016年全國卷Ⅰ) 已知函數(shù)有兩個零點.
(I)求a的取值范圍;
(II)設(shè),是的兩個零點,證明:.
【解析】(Ⅰ).
(i)設(shè),則,只有一個零點.
(ii)設(shè),則當時,;當時,.
所以在上單調(diào)遞減,在上單調(diào)遞增.
又,,取滿足且,則
,故存在兩個零點.
(iii)設(shè),由得或.
若,則,故當時,,
因此在上單調(diào)遞增.又當時,,
所以不存在兩個零點.
若,則,故當時,;
當時,.因此在上單調(diào)遞減,
在上單調(diào)遞增.又當時,,
所以不存在兩個零點.綜上, 14、的取值范圍為.
(Ⅱ)不妨設(shè),由(Ⅰ)知,,
又在上單調(diào)遞減,所以等價于,
即.由于,
而,所以.
設(shè),則.
所以當時,,而,故當時,.
從而,故.
【解法小結(jié)】 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖象,討論其圖象與x軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
三、【名校新題】
1.(2019·安徽江南十校聯(lián)考)已知函數(shù)f(x)=xln x(x>0).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意x∈(0,+∞),f(x)≥恒成立,求實數(shù)m的最大值.
15、
【解析】 (1)由f(x)=xln x(x>0),得f′(x)=1+ln x,
令f′(x)>0,得x>;令f′(x)<0,得0 16、(x)=ln x-x-m(m<-2,m為常數(shù)).
(1)求函數(shù)f(x)在的最小值;
(2)設(shè)x1,x2是函數(shù)f(x)的兩個零點,且x1 17、n x-x-m=0,且0 18、時,f(x1)-f<0,
即f(x1) 19、1),(2,+∞).
(2)由(1)知f(x)極大值=f(-1)=--+2-2=-,
f(x)極小值=f(2)=-2-4-2=-,
由數(shù)形結(jié)合,可知要使函數(shù)g(x)=f(x)-2m+3有三個零點,
則-<2m-3<-,
解得- 20、0)=1,
所以此時f(x)在(0,+∞)內(nèi)無零點,不滿足題意.
當a>0時,由f′(x)>0得x>,由f′(x)<0得0 21、(2019·合肥質(zhì)檢)已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=-4ln x的零點個數(shù).
【解析】 (1)∵f(x)是二次函數(shù),且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R},
∴設(shè)f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∴f(x)min=f(1)=-4a=-4,a=1.
故函數(shù)f(x)的解析式為f(x)=x2-2x-3.
(2)由(1)知g(x)=-4ln x=x--4ln x-2,
∴g(x)的定義域為(0,+∞) 22、,g′(x)=1+-=,令g′(x)=0,得x1=1,x2=3.
當x變化時,g′(x),g(x)的取值變化情況如下表:
x
(0,1)
1
(1,3)
3
(3,+∞)
g′(x)
+
0
-
0
+
g(x)
極大值
極小值
當0 23、)若,成立,求的取值范圍.
【解析】:(Ⅰ)由題意知函數(shù)的定義域為,
,
令,,
(1)當時,,
此時,函數(shù)在單調(diào)遞增,無極值點;
(2)當時,,
①當時,,,
,函數(shù)在單調(diào)遞增,無極值點;
②當時,,
設(shè)方程的兩根為,
因為,
所以,,
由,可得,
所以當時,,函數(shù)單調(diào)遞增;
當時,,,函數(shù)單調(diào)遞減;
當時,,,函數(shù)單調(diào)遞增;
因此函數(shù)有兩個極值點。
(3)當時,,
由,可得,
當時,,,函數(shù)單調(diào)遞增;
當時,,,函數(shù)單調(diào)遞減;
所以函數(shù)有一個極值點。
綜上所述:當時,函數(shù)有一個極值點;當時,函數(shù)無極值點;當時,函數(shù)有兩個極值點。
(II)由( 24、I)知,
(1)當時,函數(shù)在上單調(diào)遞增,
因為,所以時,,符合題意;
(2)當時,由,得,
所以函數(shù)在上單調(diào)遞增,
又,所以時,,符合題意;
(3)當時,由,可得,
所以時,函數(shù)單調(diào)遞減;
因為,所以時,,不合題意;
(4)當時,設(shè),
因為時,
所以在上單調(diào)遞增。
因此當時,,即,
可得,
當時,,
此時,不合題意,
綜上所述,的取值范圍是.
7.(2012山東)已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(Ⅰ)求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),其中是的導(dǎo)數(shù).
證明:對任意的,.
【解析】(Ⅰ)由 = 可得,而,
即,解得;
(Ⅱ),令可得,
當時,;當時,.
于是在區(qū)間內(nèi)為增函數(shù);在內(nèi)為減函數(shù)。
(Ⅲ)
=
因此對任意的,等價于
設(shè)
所以
因此時,,時,
所以,故。
設(shè),
則,
∵,∴,,∴,即
∴,對任意的,
14
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術(shù)比武題庫含解析
- 1 礦山應(yīng)急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復(fù)習題含答案
- 1 各種煤礦安全考試試題含答案