購買設(shè)計(jì)請(qǐng)充值后下載,,資源目錄下的文件所見即所得,都可以點(diǎn)開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。。【注】:dwg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請(qǐng)見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
輕量化設(shè)計(jì)的汽車零部件用高強(qiáng)度鋼來抗凹
張研 來新民 朱平 王吳榮
摘要 輕巧耐撞性是汽車車身設(shè)計(jì)的兩個(gè)重要因素。在這篇文章中,基于淺殼理論,表達(dá)抗凹剛度的雙曲率扁殼是在集中載荷條件下取得的。該臨界負(fù)荷導(dǎo)致當(dāng)?shù)噩嵥榈陌己墼谠撝行牡臏\殼被視為輕量級(jí)對(duì)汽車零部件的重要影響指數(shù)。本規(guī)則適用于輕量化設(shè)計(jì)的保險(xiǎn)杠系統(tǒng)用高強(qiáng)度鋼代替溫和鋼。耐撞模擬輕量級(jí)的一部分,證明了輕量化進(jìn)程的有效性。
關(guān)鍵詞: 高強(qiáng)度鋼 輕量 抗凹
1、介紹
近年來,由于汽車保有量的急劇增長(zhǎng),大大影響了社會(huì)和人們的生活,這種情況帶來了很多嚴(yán)峻的問題比如能源危機(jī),環(huán)境污染。國(guó)際鋁組織協(xié)會(huì)聲明石油的消耗可降低8-10%與減少約10%的汽車重量。因此,汽車輕量化是節(jié)約燃料的一個(gè)基本方式。
為了減少汽車的重量,這又兩個(gè)較好的方法。一種方法是重新設(shè)計(jì)汽車零部件優(yōu)化其結(jié)構(gòu),通過使用細(xì)薄的、空心的、小型的和混合材料的零部件,來減輕汽車的重量。另一種是使用新的輕型材料,如今這種材料越來越多,如鋁合金,高強(qiáng)度鋼,復(fù)合材料都被廣泛作為輕質(zhì)材料以取代傳統(tǒng)材料如低碳鋼。這些材料可以顯著的減輕汽車的重量。使汽車輕量化材料替換比優(yōu)化結(jié)構(gòu)更有效。根據(jù)引進(jìn)的汽車安全法規(guī),輕量化設(shè)計(jì)的車身中耐撞性和安全性被視為先決條件。高強(qiáng)度鋼被廣泛的應(yīng)用于汽車上以代替?zhèn)鹘y(tǒng)的低碳鋼。
高強(qiáng)度鋼板可用于汽車車身來提高部件碰撞能量吸收能力和耐塑性變形能力。汽車體重可減少通過使其零部件用一個(gè)更薄厚度的高強(qiáng)度鋼板取代低碳鋼板來制造。與鋁相比,鎂,復(fù)合材料和高強(qiáng)度鋼具有更好的經(jīng)濟(jì)性因?yàn)檫@些材料的原料和制作費(fèi)用比較便宜。此外,高強(qiáng)度鋼可直接應(yīng)用到生產(chǎn)線上,包括成型,焊接,裝配和油漆。經(jīng)營(yíng)成本節(jié)省了,因?yàn)闆]有必要對(duì)整個(gè)線路進(jìn)行調(diào)整。
在車身外,有幾個(gè)薄的金屬板,其中大部分是淺水面板。凹痕阻力是有能力保持形狀對(duì)沉沒撓度和地方凹痕在外力的作用下。凹性汽車板成為汽車的一個(gè)重要方面和質(zhì)量標(biāo)準(zhǔn)。因此,抗凹剛度的汽車板應(yīng)在面板設(shè)計(jì)和制造過程中被測(cè)試和評(píng)估。一些報(bào)道的測(cè)試方法列舉如下:
1)、在外力不變的情況下,測(cè)量位移沉沒撓度的fp
2)、測(cè)試外力F到獲得固定位移沉沒偏轉(zhuǎn)量
3)、在外力載荷作用下測(cè)試得邊坡力位移曲線
在這篇文章中,第二種方法將被采用,該表達(dá)抗凹剛度雙曲率淺殼是通過淺殼理論和集中負(fù)載的條件下得到的。該臨界負(fù)荷導(dǎo) 致該中心淺殼瑣碎的凹痕被視為凹性汽車零部件的重要評(píng)價(jià)指數(shù)。本規(guī)則適用于在第2條中,輕量化設(shè)計(jì)連年系統(tǒng)用高強(qiáng)度鋼代替低碳鋼與耐撞性仿真。
2、雙曲率淺殼的抗凹性分析
2.1 淺殼的抗凹剛度分析
殼牌與中表面特點(diǎn)可以分為三特征:厚度h,中面尺寸L,曲率半徑r ,并滿足的h / r<<1。當(dāng)h/L<<1時(shí),定義外殼為薄殼,如果在上述兩條件滿足的同時(shí)又滿足L/r<<1,這個(gè)薄殼被認(rèn)為是淺殼。
如圖1所示,平面x-y是淺殼中表面沿著z軸的投影。假設(shè)M是中表面上的任意一點(diǎn),兩平面QMN&PMN分別去平行OYZ和OXZ。邊PM和QM可近似認(rèn)為是垂直的因?yàn)橹斜砻婧推教?。同時(shí),MN正交于中面。因此,MN,PM,QM可構(gòu)成垂直參考系MPQN。其差額由正交坐標(biāo)系統(tǒng)OXYZ可以忽略不計(jì),同時(shí)PM和QM通過α和β來表示,該曲面坐標(biāo)MPQN。
圖1
假設(shè)M是Z軸上的一點(diǎn),對(duì)中表面的詳細(xì)分析方程如下:
z=F(x,y) (1)
由于是平坦的外殼,就有如下方程:
(2)
中面的曲率和撓度可近似至:
(3)
該中面的下載系數(shù)可沿α和β方向?qū)С觯?
(4)
運(yùn)用集中力P沿Z軸和忽略橫向剪切力造成的影響,得到淺殼的平衡微分方程:
(5)
其中δ(0,0)是狄拉克-δ函數(shù)。
淺殼的兼容性方程是:
(6)
其中
通過橫向位移w來表達(dá)瞬時(shí)結(jié)果M1, M2和M12,淺殼在橫向集中力下的基本方程:
(7)
其中N1是膜應(yīng)力在X方向,N2是膜應(yīng)力在Y方向,D表示淺殼的抗彎剛度。
這是很難解決上述方程。據(jù)要立足現(xiàn)實(shí),沉沒的偏轉(zhuǎn)將只集中就在小范圍內(nèi)左右對(duì)外力P ,所以無限大型淺水殼牌是假定在這項(xiàng)研究中。因?yàn)閣,N1,N2關(guān)于X,Y軸對(duì)稱,所有順序衍生的w,N1,N2都無限接近于零,以下方程可通過傅立葉進(jìn)行變換。
(8)
其中:
(9)
從公式(8)我們可以得到。通過逆向傅立葉變換和極坐標(biāo)轉(zhuǎn)換ξ,η,w,再根據(jù)極坐標(biāo)系統(tǒng)我們可以得到:
(10)
把x=0,y=0帶入式(8),這關(guān)系在偏轉(zhuǎn)力fp和矩形淺殼的集中力P我們可以得到如下:
(11)
最后抗凹剛度的雙曲率淺殼K便可獲得
(12)
這個(gè)等式綜合的說明了該抗凹剛度雙曲率淺殼的所有影響因素,包括材料性能,幾何參數(shù),這些因素可以用來引導(dǎo)設(shè)計(jì),材料選擇及制造。
2.2分析臨界載荷造成當(dāng)?shù)噩嵥榘己?
為定量評(píng)價(jià)的臨界載荷對(duì)地方抗凹的展板,幾位研究員已經(jīng)提出了經(jīng)驗(yàn)公式。根據(jù)大量的實(shí)驗(yàn),Dicellello說明一個(gè)公式表明最低能量W造成有形瑣碎的凹痕微量由厚度T的屈服應(yīng)力RS和基本抗凹剛度K。
(13)
其中C是比例恒,從公式(12)和(13),臨界載荷聚合酶鏈反應(yīng),導(dǎo)致淺殼中心瑣碎的凹痕是可以實(shí)現(xiàn)的,其中這被定義為評(píng)價(jià)。
(14)
從公式(14),是有密切相關(guān)關(guān)系臨界負(fù)荷Pcr和厚度t,屈服應(yīng)力,關(guān)鍵負(fù)載可以是根據(jù)一個(gè)規(guī)則進(jìn)行輕量化設(shè)計(jì)其中汽車零部件用高強(qiáng)度鋼代替低碳鋼。
3、舉列和耐撞性分析
3.1 整車的有限元模型及其碰撞模擬
一份詳細(xì)的有限元模型已確立基于從一輛房車改裝成一輛客車, 如圖2所示。以確保正確性性和有效性的有限元模型,一下方法將被采用:
1、因?yàn)槟康氖菫榱四M正面碰撞的車,嚙合的前端車身比后方車身更稠密。
2、采取4節(jié)點(diǎn)殼單元和8節(jié)點(diǎn)磚固體成分來降低集成方法與沙漏控制,以提高仿真效率。
3、用嚙合和大量的縮放技術(shù),到該特征長(zhǎng)度的最小單元以確保提高仿真效率。
4、材料本構(gòu)與Cowper–Symonds應(yīng)變率項(xiàng)目是用于鋼鐵零件。
5、自動(dòng)單面接觸算法是通過在模擬瞄準(zhǔn)的復(fù)雜性來進(jìn)行汽車碰撞仿真分析。
圖2 整車的有限元模型
6、點(diǎn)焊元件故障規(guī)則中說,考慮到該對(duì)標(biāo)準(zhǔn)力和剪切力,是用來模擬點(diǎn)焊連接汽車零部件。
顯式動(dòng)力有限元軟件LS - DYNA的950版本是用來模擬正面碰撞的車對(duì)剛性壁在車速為50公里/秒根據(jù)國(guó)家墜毀立法CMDVR294。一個(gè)真正的車毀人亡實(shí)驗(yàn)是在清華大學(xué)實(shí)驗(yàn)室做的汽車碰撞。通過對(duì)比時(shí)程加速度某些位置上的一個(gè)支柱0.1 s時(shí),模擬給出了一個(gè)合理的適合實(shí)驗(yàn)結(jié)果,其中保證正確性的有限元模型,并給出了更好的基地,為下一步輕量化優(yōu)化設(shè)計(jì)做準(zhǔn)備。
3、2輕量化設(shè)計(jì)及耐撞性分析
使用高強(qiáng)度鋼,是其中一個(gè)有效的如何降低汽車重量。然而,部分績(jī)效(如耐撞性,剛度,抗凹)通過新的材料得到保證。舉例來說,前面部分的汽車是主要能源吸收部分,在這一過程中的車毀人亡,所以能源吸收性能不影響乘客,故設(shè)計(jì)的前車零件的安全性需得到保證。在這項(xiàng)研究中,研究了不同的材料來制作汽車的緩沖器,但其余的為抗凹。
低碳鋼及高碳鋼的力學(xué)性能如下(見表1):
評(píng)價(jià)指標(biāo)的凹痕阻力保險(xiǎn)杠用低碳鋼是
(15)
當(dāng)高強(qiáng)度鋼是用來取代低碳鋼其余的主要形狀和抗凹性能, 高強(qiáng)度鋼的新厚度可以實(shí)現(xiàn)
(16)
從公式(16)可以得到,保險(xiǎn)杠的厚度可使用高強(qiáng)度鋼得到積累和更新,在整車FE模型中。變形過程中的收獲,以新的材料取得后,車毀人亡的是重新模擬與更新部分厚度(見圖3)
圖3
通過模擬實(shí)驗(yàn)中,變形的保險(xiǎn)杠有兩種不同的材料相似,即塑料鉸鏈與張力塑性變形出現(xiàn)在部分保險(xiǎn)杠的中部。能量吸收的過程表現(xiàn)在保險(xiǎn)杠橫梁上。從圖 4可以看出兩種材料的能量吸收差異很小,約4.1 %為保險(xiǎn)杠梁吸收。從中可以得出一個(gè)結(jié)論,在這份研究中說明的是在抗凹性的評(píng)價(jià)指標(biāo)的基礎(chǔ)上,合理的減少保險(xiǎn)杠板的厚度。
圖4
4、結(jié)論
本文研究了汽車中叫小的雙曲率淺殼的抗凹性零件,使用方法如下:
1、 抗凹剛度下,集中力量,是鑒于這種零件。
2、 臨界載荷導(dǎo)致當(dāng)?shù)噩嵥橄魅踉撝行牡臏\殼已推斷, 這反過來又成為汽車零部件凹痕阻力的評(píng)價(jià)指數(shù)。
3、 有效性的評(píng)價(jià)指標(biāo),就是證明申請(qǐng)發(fā)達(dá)國(guó)家的規(guī)則向輕量化設(shè)計(jì)的保險(xiǎn)杠系統(tǒng)采用高強(qiáng)度鋼代替溫和鋼并通過耐撞性仿真
參考文獻(xiàn):
【1】 李元先,林中勤,江愛琴,陳關(guān)龍,使用高強(qiáng)度鋼的輕量化設(shè)計(jì)與防撞車身,2003;24:177-82
【2】 李元先,汽車車身輕量化研究的基礎(chǔ)上耐撞性的數(shù)值模擬。博士論文,中國(guó),上海交通大學(xué),2003
【3】 朱石鋒,宋奇峰,解放1092汽車車身輕量的研究,汽車工藝材料,2002
【4】 Jambor A, Beyer M. 新汽車新材料,1997
【5】 Che on SS, Lee DG, Jeong KS. 復(fù)合材料門影響客車橫梁,1997
【6】 李忠勝,周先斌,汽車鋼板抗凹性的動(dòng)太靜態(tài)分析,2003
【7】 李忠勝,周先斌,雙曲率車身鋼板的下沉剛度,2003
【8】 對(duì)轎車車身鋼板的強(qiáng)度,剛度及抗凹性分析,1995
【9】 車身面板的抗凹性的設(shè)計(jì)標(biāo)準(zhǔn),SAE 1974
【10】韓強(qiáng),黃小清,恁建國(guó),先進(jìn)的鋼板殼體理論,2002
江 蘇 大 學(xué)
畢 業(yè) 設(shè) 計(jì)(論 文)任 務(wù) 書
汽車與交通工程 學(xué)院 班級(jí) 學(xué)生
設(shè)計(jì)(論文)題目 汽車驅(qū)動(dòng)橋設(shè)計(jì)
課題來源 自選
起訖日期 2011 年 3月7日至 2011 年 6 月 10 日共14周
指導(dǎo)教師(簽名)
教研室主任(簽名)
設(shè)計(jì)計(jì)算依據(jù):
汽車驅(qū)動(dòng)橋設(shè)計(jì)依據(jù):
發(fā)動(dòng)機(jī)排量 1997ML?
最大功率/轉(zhuǎn)速110/6000? KW/RPM??
最大轉(zhuǎn)矩/轉(zhuǎn)速 186/5000? NM/RPM
最高車速 Vmax=180km/h
輪距 1450mm?
車輪滾動(dòng)半徑R=0.312m
主減速比 3.91
任務(wù)要求:
1. 英文翻譯,不少于3萬字符
2. 完成一篇不少于5000字的文獻(xiàn)綜述
3. 完成汽車驅(qū)動(dòng)橋總體方案與主減速器、差速器、半軸等零部件的設(shè)計(jì)方案,并進(jìn)行強(qiáng)度校核.
要求: 參考汽車構(gòu)造、汽車設(shè)計(jì)、機(jī)械制圖等教科書和參考資料,合理選擇主減速器、差速器、半軸等零部件的設(shè)計(jì)參數(shù);繪制驅(qū)動(dòng)橋總成圖及主減速器主從動(dòng)齒輪、差速器半軸齒輪、半軸等零部件設(shè)計(jì)圖。圖紙總量不少于3張零號(hào)圖。
4. 完成畢業(yè)設(shè)計(jì)說明書
5. 畢業(yè)設(shè)計(jì)答辯
畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃:
起訖日期
工 作 內(nèi) 容
備 注
3.07~3.18
3.19~3.31
4.1~4.20
4.21~5.22
5.22~5.31
6.1~6.10
查閱文獻(xiàn)、翻譯外文資料。
閱讀文獻(xiàn)資料,完成外文翻譯資料和文獻(xiàn)綜述
確定驅(qū)動(dòng)橋設(shè)計(jì)方案和主減速器、差速器、半軸等零部件設(shè)計(jì)參數(shù),并進(jìn)行強(qiáng)度校核。
繪制驅(qū)動(dòng)橋總成圖及主減速器主從動(dòng)齒輪、差速器、半軸等零部件設(shè)計(jì)圖。
圖紙修改,撰寫畢業(yè)設(shè)計(jì)說明書。
整理畢業(yè)設(shè)計(jì)資料,準(zhǔn)備答辯
外文翻譯資料匯報(bào)
審查文獻(xiàn)綜述
審查設(shè)計(jì)方案和計(jì)算結(jié)果
審查設(shè)計(jì)圖紙
指導(dǎo)及審查設(shè)計(jì)說明書
準(zhǔn)備多媒體答辯材料1份。
每周一下午為畢業(yè)設(shè)計(jì)匯報(bào)、交流、討論時(shí)間。
J I A N G S U U N I V E R S I T Y
本 科 畢 業(yè) 論 文
汽車驅(qū)動(dòng)橋設(shè)計(jì)
Automotive Drive Axle Design
學(xué)院名稱: 汽車與交通工程學(xué)院
專業(yè)班級(jí):
學(xué)生姓名:
指導(dǎo)教師姓名:
指導(dǎo)教師職稱: 教授
2011 年 6 月
文獻(xiàn)綜述
摘要 隨著我國(guó)汽車工業(yè)的高速發(fā)展,作為汽車主要零部件之一的車橋系統(tǒng)也得到相應(yīng)的發(fā)展。各車橋生產(chǎn)廠家為了能在激烈的車橋產(chǎn)品市場(chǎng)中占有一定的份額,紛紛推出承載能力強(qiáng)、技術(shù)含量高、質(zhì)量好的車橋總成[1]。本文從眾多的車橋生產(chǎn)廠生產(chǎn)的產(chǎn)品中總結(jié)、歸納,分析了今后商用車車橋的發(fā)展。
關(guān)鍵詞:商用車 車橋 法規(guī) 發(fā)展 車橋現(xiàn)狀
引言
近十幾年來,我國(guó)汽車工業(yè)發(fā)展迅猛,特別是在我國(guó)加入世貿(mào)后的這兩三年時(shí)間里,商用車的發(fā)展和乘用車一樣的快速。從2000年到2003年,全國(guó)商用車年銷售量由774901輛增加到了1211411輛,總增長(zhǎng)率高達(dá)56.3%[2]。汽車工業(yè)的發(fā)展帶動(dòng)了零部件及相關(guān)產(chǎn)業(yè)的發(fā)展,作為汽車關(guān)鍵零部件之一的車橋系統(tǒng)也得到相應(yīng)的發(fā)展,各生產(chǎn)廠家基本上形成了專業(yè)化、系列化、批量化生產(chǎn)的局面。
一、驅(qū)動(dòng)橋的組成
驅(qū)動(dòng)橋主要由主減速器、差速器、車輪傳動(dòng)裝置和驅(qū)動(dòng)橋殼等組成。
1、主減速器:主減速器一般用來改變傳動(dòng)方向,降低轉(zhuǎn)速,增大扭矩,保證汽車有足夠的驅(qū)動(dòng)力和適當(dāng)?shù)乃倨ぁV鳒p速器類型較多,有單級(jí)、雙級(jí)、雙速、輪邊減速器等。
由一對(duì)減速齒輪實(shí)現(xiàn)減速的裝置,稱為單級(jí)減速器。其結(jié)構(gòu)簡(jiǎn)單,重量輕,東風(fēng)BQl090型等輕、中型載重汽車上應(yīng)用廣泛。但是對(duì)一些載重較大的載重汽車,要求較大的減速比,用單級(jí)主減速器傳動(dòng),則從動(dòng)齒輪的直徑就必須增大,會(huì)影響驅(qū)動(dòng)橋的離地間隙,所以采用兩次減速。通常稱為雙級(jí)減速器。雙級(jí)減速器有兩組減速齒輪,實(shí)現(xiàn)兩次減速增扭[3]。
2、差速器:差速器用以連接左右半軸,可使兩側(cè)車輪以不同角速度旋轉(zhuǎn)同時(shí)傳遞扭矩。保證車輪的正常滾動(dòng)。有的多橋驅(qū)動(dòng)的汽車,在分動(dòng)器內(nèi)或在貫通式傳動(dòng)的軸間也裝有差速器,稱為橋間差速器。其作用是在汽車轉(zhuǎn)彎或在不平坦的路面上行駛時(shí),使前后驅(qū)動(dòng)車輪之間產(chǎn)生差速作用。
目前國(guó)產(chǎn)轎車及其它類汽車基本都采用了對(duì)稱式錐齒輪普通差速器。對(duì)稱式錐齒輪差速器由行星齒輪、半軸齒輪、行星齒輪軸(十字軸或一根直銷軸)和差速器殼等組成。
3、半軸:它是將差速器傳來的扭矩再傳給車輪,驅(qū)動(dòng)車輪旋轉(zhuǎn),推動(dòng)汽車行駛的實(shí)心軸。由于輪轂的安裝結(jié)構(gòu)不同,而半軸的受力情況也不同。所以,半軸分為全浮式、半浮式、3/4浮式三種型式。一般大、中型汽車均采用全浮式結(jié)構(gòu)。而半浮式半軸這種結(jié)構(gòu)型式主要用于小客車。3/4浮式半軸是受彎短的程度介于半浮式和全浮式之間[4]。此式半軸目前應(yīng)用不多,只在個(gè)別小臥車上應(yīng)用,如華沙M20型汽車。
4、橋殼:整體式橋殼因強(qiáng)度和剛度性能好,便于主減速器的安裝、調(diào)整和維修,而得到廣泛應(yīng)用。整體式橋殼因制造方法不同,可分為整體鑄造式、中段鑄造壓入鋼管式和鋼板沖壓焊接式等。分段式橋殼一般分為兩段,由螺栓1將兩段連成一體。分段式橋殼比較易于鑄造和加工。目前應(yīng)用整體式較多。
二?、汽車驅(qū)動(dòng)橋現(xiàn)狀
現(xiàn)在,世界上貨車普遍采用兩種驅(qū)動(dòng)橋結(jié)構(gòu):?jiǎn)渭?jí)減速雙曲線螺旋錐齒輪副;帶輪邊減速(行星齒輪傳動(dòng))的雙級(jí)主減速器。后者更適宜于最大程度地滿足用戶不同需要。
在西歐,帶輪邊減速的雙級(jí)主減速器后驅(qū)動(dòng)橋只占整個(gè)產(chǎn)品的40%,且有呈下降趨勢(shì),在美國(guó)只占10%。其原因是這些地區(qū)的道路較好,采用單級(jí)減速雙曲線螺旋錐齒輪副成本較低,故大部分均采用這種結(jié)構(gòu)[5]。而亞洲、非洲和南美國(guó)家則采用帶輪邊減速的雙級(jí)主減速器的驅(qū)動(dòng)橋,用于非道路和惡劣道路使用的車輛(工程自卸車、運(yùn)水車等)。因此可以得出結(jié)論:一個(gè)國(guó)家的道路愈差,則采用帶輪邊減速雙級(jí)主減速器驅(qū)動(dòng)橋愈多,反之,則愈少。
國(guó)外汽車驅(qū)動(dòng)橋已普遍采用限滑差速器(N-Pin牙嵌式或多片摩擦盤式)、濕式行車制動(dòng)器等先進(jìn)技術(shù)。限滑差速器大大減少了輪胎的磨損,而濕式行車制動(dòng)器則提高了主機(jī)的安全性能,簡(jiǎn)化了維修工作。國(guó)內(nèi)僅一部分車使用N-Pin牙嵌式差速器。限滑差速器成本較高,因而在多數(shù)國(guó)產(chǎn)驅(qū)動(dòng)橋上一直沒有得到應(yīng)用。目前向國(guó)內(nèi)提供限滑差速器的制造商主要是美國(guó)TraCtech公司和德國(guó)采埃孚公司。美國(guó)Tractech公司在蘇州的工廠即將建成投產(chǎn),主要生產(chǎn)N-Pin牙嵌式、多片摩擦盤式和戶下O比例扭矩(三周節(jié))差速器(鎖緊系數(shù)3.5)。國(guó)內(nèi)如徐工、鼎盛天工等主機(jī)制造商等原來自制一部分N-Pin牙嵌式差速器,后因質(zhì)量不過關(guān)而放棄。國(guó)內(nèi)有幾個(gè)制造商生產(chǎn)比例扭矩差速器,但均為單周節(jié),鎖緊系數(shù)138,較三周節(jié)要小得多。徐州良羽傳動(dòng)機(jī)械有限公司在停車制動(dòng)器(液壓)上也做了一些工作,主要用于重型卡車產(chǎn)品,但國(guó)產(chǎn)此類產(chǎn)品的可靠性還有待提高[6]。
美國(guó)戴納(Dana)公司斯皮賽爾重型車橋和制動(dòng)器部最近研制成新一代貨車用中型和重型科爾德(Gold)系列車橋,其中一種重型單級(jí)減速驅(qū)動(dòng)橋和兩種中型單級(jí)減速驅(qū)動(dòng)橋已投人生產(chǎn)。除供應(yīng)納維斯塔(Navi-star)國(guó)際公司和麥克貨車公司用外,并將積極開拓世界市場(chǎng)。新型科爾德重型523-S單級(jí)橋標(biāo)定載荷10440kg,采用新設(shè)計(jì)的恒齒高準(zhǔn)雙曲面齒輪,直徑470mm。該齒輪采用專利工藝加工,齒根全圓弧倒角,比傳統(tǒng)的準(zhǔn)雙曲面齒輪更堅(jiān)固。該齒輪具有表面塑性變形小,產(chǎn)生的熱量少,使用壽命長(zhǎng),效率高等優(yōu)點(diǎn),據(jù)試驗(yàn)表明,新的523-S車橋比先前10440kg車橋的使用壽命提高2倍,如在523-S車轎上加裝控制式差速鎖(5230-SL型)還能大大提高在惡劣環(huán)境下的牽引力。來用整體式球墨鑄鐵外殼制成的5135-和5150-S兩種型號(hào)的中型橋,額定載荷分別為6129kg和6810kg,傳動(dòng)比值范圍3.07、4.78[7]。這兩種車橋是為低斷面輪胎,較高速度車輛而設(shè)計(jì)的。其為快速和長(zhǎng)途運(yùn)輸需求而安裝錐形滾柱軸承具有較高承載能力;其高頻淬火的車橋軸使用壽命長(zhǎng),適用多種潤(rùn)滑劑的三唇橡膠油封密封性能好。
三、驅(qū)動(dòng)橋的發(fā)展方向
3.1? 驅(qū)動(dòng)橋向重載方向發(fā)展
? ? 隨著我國(guó)基礎(chǔ)設(shè)施建設(shè)投資的不斷加大以及水電、礦業(yè)、油田、公路、城市交通運(yùn)輸和環(huán)保工程建設(shè)等項(xiàng)目的增加,加大了重型車的需要,為重型車的發(fā)展創(chuàng)造了廣闊的市場(chǎng)空間。重型汽車近年來生產(chǎn)總量直線上升,2001年全國(guó)重型汽車比上年同期增長(zhǎng)91.67%,2002年為60.97%,2003年為3.22%,重型汽車的用車環(huán)境及其它各項(xiàng)指標(biāo)發(fā)生了很多的變化,標(biāo)載噸位不斷向大的方向發(fā)展,多軸車上升明顯[8]。我國(guó)《汽車工業(yè)“十五”規(guī)劃》指出,載貨車要重點(diǎn)發(fā)展適應(yīng)高速公路需要的(排量9L以上,輸出功率220kW以上)重型車,主要為大功率牽引車及其它大型化、長(zhǎng)途化、高速化、專用化等重型專用車。各汽車生產(chǎn)廠家為了實(shí)現(xiàn)汽車的高噸位,對(duì)車輛的行駛系進(jìn)行了加強(qiáng),通過采用多軸行駛系或空氣懸架結(jié)構(gòu),滿足車輛的軸荷限值和提高行駛平順性。針對(duì)重型車的發(fā)展,為了不斷滿足重型車的需要,車橋也必須向著重載、高速的方向發(fā)展。許多車橋?qū)I(yè)生產(chǎn)廠也針對(duì)重型車發(fā)展的趨勢(shì),通過加強(qiáng)橋殼、強(qiáng)化傳動(dòng)齒輪等方式,紛紛推出重噸位的前/后橋總成,最大載重量達(dá)26噸[9]。
3.2? 驅(qū)動(dòng)橋向多聯(lián)驅(qū)動(dòng)橋發(fā)展
? ? 為了規(guī)范道路車輛的制造,為治理超限超載提供技術(shù)上的準(zhǔn)則,由國(guó)家發(fā)改委、交通部、公安部共同提出的強(qiáng)制性標(biāo)準(zhǔn)GB1589-2004《道路車輛外廓尺寸、軸荷及質(zhì)量限值》于2004年4月28日發(fā)布,該標(biāo)準(zhǔn)對(duì)汽車車橋的載荷進(jìn)行了明確規(guī)定:?jiǎn)屋S掛車軸荷的最大限值每側(cè)單胎為6000kg,每側(cè)雙胎為10000kg,并裝雙軸掛車軸荷的最大限值為20000kg,并裝三軸掛車軸荷的最大限值為24000kg。這樣,為了實(shí)現(xiàn)車輛多拉快跑又不違反國(guó)家法規(guī),各汽車生產(chǎn)廠家在6X4、8X4等多軸車的基礎(chǔ)上推出了10X6以上的多軸重型車。但這些多軸車都是在雙聯(lián)驅(qū)動(dòng)橋的基礎(chǔ)上增加浮動(dòng)橋而成,雖然其稱10X6,但實(shí)際起驅(qū)動(dòng)作用的只有兩個(gè)驅(qū)動(dòng)橋,這樣,由于驅(qū)動(dòng)橋不能對(duì)車輪進(jìn)行合理的扭矩分配,使得增加浮動(dòng)橋后的整車行駛系沒有很好地發(fā)揮車橋驅(qū)動(dòng)的作用。為了能合理地分配扭矩,以滿足某些獨(dú)立懸掛多軸驅(qū)動(dòng)車型的使用,一些車橋生產(chǎn)廠家自主研發(fā)了三聯(lián)驅(qū)動(dòng)橋,三聯(lián)驅(qū)動(dòng)橋的扭矩分配原理是:每一個(gè)驅(qū)動(dòng)橋都可以得到從發(fā)動(dòng)機(jī)傳出的扭矩的1/3。這樣就可以在很大限度上滿足多軸車的需要,合理分配從發(fā)動(dòng)機(jī)傳到車輪上的扭矩,提高這類車型的可靠性和安全性,并為以后的四聯(lián)、五聯(lián)驅(qū)動(dòng)橋打下科學(xué)基礎(chǔ)[10]。
3.3? 增加驅(qū)動(dòng)橋附件的技術(shù)含量
? ? 據(jù)分析,不管重型車的技術(shù)含量提升得多快,在未來10~15年內(nèi)大多數(shù)重型車的車橋和懸架結(jié)構(gòu)不會(huì)有明顯的改變,傳統(tǒng)的結(jié)構(gòu)和型式仍處于主導(dǎo)地位。那怎樣在相同結(jié)構(gòu)的基礎(chǔ)上推出各自車橋的亮點(diǎn)呢?這是每一個(gè)專業(yè)廠必須不斷研究的問題。以前,各廠家主要是在載重噸位上進(jìn)行競(jìng)爭(zhēng),但在國(guó)家法規(guī)的限定下,車橋的載重能力不可能有太多的增加,現(xiàn)在各專業(yè)廠采用最多的方法是:不斷增加車橋及其附件的技術(shù)含量,從橋殼的制造工藝、車橋的減速形式、車輪的制動(dòng)方式等方面入手,通過吸收國(guó)外一些先進(jìn)的技術(shù),推出具有本企業(yè)特色、結(jié)構(gòu)先進(jìn)、承載能力強(qiáng)的車橋,不斷提升產(chǎn)品的制造質(zhì)量及服務(wù)質(zhì)量[11]。
3.3.1? 從橋殼的制造技術(shù)上
? ? 尋求制造工藝先進(jìn)、制造效率高、成本低的方法,使橋殼在原有的基礎(chǔ)上具有結(jié)構(gòu)先進(jìn)、簡(jiǎn)單、強(qiáng)度高的特點(diǎn)。目前,橋殼的制造方法主要有:
? ? (1)沖焊橋殼:沖焊橋殼工藝是經(jīng)過氣割下料后,中頻加熱沖壓成型后兩半對(duì)焊。這是一種傳統(tǒng)的橋殼加工形式,具有工藝簡(jiǎn)單、材料利用率高、質(zhì)量小、韌性高、彈性好、成本低的優(yōu)點(diǎn)。但由于沖焊過程中,材料受熱,使得材料分子結(jié)構(gòu)發(fā)生了變化,失去了原有的狀態(tài)致使強(qiáng)度降低。同時(shí),由于在焊接過程中,不可避免地出現(xiàn)焊接缺陷,而焊接缺陷是影響整體強(qiáng)度的主要原因之一。
? ? (2)鑄造橋殼:具有剛性好、強(qiáng)度高、塑性變形小、易鑄成等強(qiáng)度梁等優(yōu)點(diǎn),但韌性及彈性沒有沖焊橋殼好[12]。為了達(dá)到更大的承載能力,往往以加大截面、增加安裝尺寸的方式進(jìn)行局部加強(qiáng),這就使得整體質(zhì)量大、鑄造質(zhì)量不易保證、成本較高,不適合整車進(jìn)行輕量化及降成本設(shè)計(jì)。
? ? (3)整體冷成型無焊縫橋殼:這是一種新型的橋殼成型方式,其特點(diǎn)是采用國(guó)際最先進(jìn)的低合金無縫鋼管整體冷成形,無縱向焊縫,消除了由于材料受熱而使晶格發(fā)生變化后強(qiáng)度下降的影響。在冷成形的過程中,反而使強(qiáng)度大幅度提高,據(jù)實(shí)驗(yàn),冷成形橋殼的抗彎和疲勞強(qiáng)度比熱成型兩半殼焊接橋殼可提高近一倍。
3.3.2? 從齒輪減速形式上
? ? 從傳統(tǒng)的中央單級(jí)減速發(fā)展到了現(xiàn)在的中央及輪邊雙級(jí)減速或雙級(jí)主減速器結(jié)構(gòu),不但擴(kuò)寬了車橋轉(zhuǎn)速比的范圍,有利于輸出轉(zhuǎn)速及輸出扭矩的調(diào)整。還由于把減速機(jī)構(gòu)放到輪邊后,使得車橋中央的第一級(jí)減速比做得比較小,因此橋殼中部離地間距較大,能很好地滿足汽車通過性的要求。
3.3.3? 從齒輪加工形式上
? ? 由于汽車高速行駛要求及法規(guī)對(duì)于噪音的控制要求,為了降低齒輪在高速運(yùn)轉(zhuǎn)下的磨損,增加車橋的使用壽命,降低維修費(fèi)用,車橋內(nèi)部的主、從動(dòng)齒輪、行星齒輪及圓柱齒輪逐漸采用精磨加。但由于精磨加工成本較高,因此在貨車車橋上的應(yīng)用還不是很多,但這也是以后高速車橋發(fā)展的需要[13]。
3.3.4? 從車橋所帶的附件上
? ? 為了在市場(chǎng)競(jìng)爭(zhēng)中凸出本企業(yè)車橋的亮點(diǎn),現(xiàn)在各車橋廠做得最多的事情就是在傳統(tǒng)車橋的基礎(chǔ)上不斷增加具有競(jìng)爭(zhēng)優(yōu)勢(shì)的先進(jìn)附件:比如為了增加汽車行駛安全性,增加ABS防抱死系統(tǒng)、驅(qū)動(dòng)防滑控制系統(tǒng)(ASR)、制動(dòng)間隙調(diào)整臂、無石棉制動(dòng)摩擦片等裝置,是今后車橋發(fā)展必不可少的項(xiàng)目;為了提高車輛行駛的平順性,很好地保護(hù)車輛運(yùn)載貨物,選裝空氣懸架或橡膠懸掛是有效途徑。根據(jù)資料表明,隨著相關(guān)法律法規(guī)的不斷完善,空氣懸架市場(chǎng)將進(jìn)入增長(zhǎng)期;為了有效地保護(hù)車輪制動(dòng)鼓,減少由于制動(dòng)鼓發(fā)熱而造成龜裂和抱死的現(xiàn)象,現(xiàn)在有的廠家主要從制動(dòng)鼓散熱形式去研究制動(dòng)鼓結(jié)構(gòu),讓制動(dòng)鼓不僅要有好的散熱,還要有有效的導(dǎo)熱,形成風(fēng)冷降溫,消除了傳統(tǒng)的強(qiáng)制水冷降溫的做法,從而提高車橋輪鼓的制動(dòng)性能和使用壽命[14]。
3.3.5? 從油封質(zhì)量上
? ? 要求密封性好,使用壽命長(zhǎng),讓車橋在高速、高溫、長(zhǎng)時(shí)間動(dòng)轉(zhuǎn)狀態(tài)下不漏油,保證車橋的良好潤(rùn)滑,減少維修維護(hù)所需的費(fèi)用。
四、結(jié)束語
? ? 綜合分析,雖然汽車科技發(fā)展迅速,但在目前的狀態(tài)下車橋的結(jié)構(gòu)并沒有多大的變化,為了適應(yīng)市場(chǎng)的需要,適應(yīng)國(guó)家法律、法規(guī)的需要,車橋技術(shù)的進(jìn)展主要是:改變橋殼的制造工藝以提高制造的效率、增加車橋附件的技術(shù)含量以提高車輛行駛安全性、提高車橋的自潤(rùn)滑能力以提高車橋的使用壽命、增加電子技術(shù)在車橋的上應(yīng)用以減少人工操縱的疲勞、減少維修費(fèi)用、提高服務(wù)質(zhì)量、降低車橋成本以提高車橋的競(jìng)爭(zhēng)力等方面開發(fā)車橋,從最大限度上滿足車橋高速、重載、智能發(fā)展的需要,以生產(chǎn)出具有本企業(yè)特色、適合市場(chǎng)需要的車橋。
參考文獻(xiàn)
[1].葛海龍.后橋主減速器裝配的關(guān)鍵測(cè)量技術(shù).合肥工業(yè)大學(xué)碩士學(xué)位論文,2005
[2].張冬.機(jī)械工程師.2007年.第11期
[3].陳家瑞.汽車構(gòu)造(第四版)(下冊(cè)).北京:人民交通出版社,2002
[4].賈憲林,周雙龍,高清海,等.汽車主減速器圓錐滾子軸承預(yù)緊參數(shù)的確定[J].軸承,2006(7):11-12.?
[5].劉惟信.汽車車橋設(shè)計(jì)[M].北京:清華大學(xué)出版社,2004.?
[6].王望予.汽車設(shè)計(jì)[M].3版.北京:清華大學(xué)出版社,2002.?
[7].陳黎卿,鄭 泉.基于ASP.NET的汽車維修OA系統(tǒng)的開發(fā)研究[J].工業(yè)控制計(jì)算機(jī),2007(8):59-61.
[8].李珍華,丁杰雄,王叢嶺等一種改進(jìn)的通用型主錐選墊機(jī)原理及實(shí)現(xiàn).材料.工藝.設(shè)備,2004,(l):35-41
[9].徐灝,等.機(jī)械設(shè)計(jì)手冊(cè)〔M〕.北京:機(jī)械工業(yè)出版社,1991.9.
[10].王雪清.軸承使用時(shí)的預(yù)緊情況分析.軸承,2001,(2):15-18
[11].王敏中.高等彈性力學(xué).北京大學(xué)出版社,2002
[12].孫傳祝,董煥俊.關(guān)于軸向滑塊凸輪式差速器的初步探討[J].職大學(xué)報(bào),2005,55(2):14~21
[13].雷雨成,白綏濱,王聰,等.超越式汽車差速器研究[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),1995,(6):145.
[14].劉惟信. 汽車車橋設(shè)計(jì)[M]. 北京:清華大學(xué)出版社,2004.
汽車驅(qū)動(dòng)橋設(shè)計(jì) 專業(yè)班級(jí): 學(xué)生姓名: 指導(dǎo)教師: 職稱:教授 摘要 驅(qū)動(dòng)橋位于傳動(dòng)系末端,其基本功用是增矩、降速,承受作用于路面和車架或車身 之間的作用力。它的性能好壞直接影響整車性能,而對(duì)于載重汽車顯得尤為重要。當(dāng)采 用大功率發(fā)動(dòng)機(jī)輸出大的轉(zhuǎn)矩以滿足目前載重汽車的快速、重載的高效率、高效益的需 要時(shí),必須搭配一個(gè)高效、可靠的驅(qū)動(dòng)橋,所以采用傳動(dòng)效率高的單級(jí)減速驅(qū)動(dòng)橋已經(jīng) 成為未來載重汽車的發(fā)展方向。驅(qū)動(dòng)橋設(shè)計(jì)應(yīng)主要保證汽車在給定的條件下具有最佳的 動(dòng)力性和燃油經(jīng)濟(jì)性。本設(shè)計(jì)根據(jù)給定的參數(shù),按照傳統(tǒng)設(shè)計(jì)方法并參考同類型車確定 汽車總體參數(shù),再確定主減速器、差速器、半軸和橋殼的結(jié)構(gòu)類型,最后進(jìn)行參數(shù)設(shè)計(jì) 并對(duì)主減速器主、從動(dòng)齒輪、半軸齒輪和行星齒輪進(jìn)行強(qiáng)度以及壽命的校核。驅(qū)動(dòng)橋設(shè) 計(jì)過程中基本保證結(jié)構(gòu)合理,符合實(shí)際應(yīng)用,總成及零部件的設(shè)計(jì)能盡量滿足零件的標(biāo) 準(zhǔn)化、部件的通用化和產(chǎn)品的系列化及汽車變型的要求,修理、保養(yǎng)方便,機(jī)件工藝性 好,制造容易。 關(guān)鍵字:輕型貨車 驅(qū)動(dòng)橋 主減速器 差速器 Automotive Drive Axle Design Abstract Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed, bearing the force between the road and the frame or body. Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given, firstly determine the overall vehicle parameters in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear, the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle, we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ universality and the serialization and change convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words: light truck; drive axle; single reduction final drive 目 錄 引言 ........................................................................1 第一章 總體方案論證 ......................................................2 1.1 非斷開式驅(qū)動(dòng)橋 .......................................................3 1.2 斷開式驅(qū)動(dòng)橋 .........................................................3 1.3 多橋驅(qū)動(dòng)的布置 .......................................................4 第二章 主減速器設(shè)計(jì) ......................................................5 2.1 主減速器結(jié)構(gòu)方案分析 .................................................6 2.1.1 螺旋錐齒輪傳動(dòng) ....................................................6 2.1.2 結(jié)構(gòu)形式 ..........................................................7 2.2 主減速器主、從動(dòng)錐齒輪的支承方案 .....................................7 2.2.1 主動(dòng)錐齒輪的支承 ..................................................7 2.2.2 從動(dòng)錐齒輪的支承 ..................................................8 2.3 主減速器錐齒輪設(shè)計(jì) ...................................................8 2.3.1 主減速比 i 的確定 .................................................80 2.3.2 主減速器錐齒輪的主要參數(shù)選擇 .....................................10 2.4 主減速器錐齒輪的材料 ................................................11 2.5 主減速器錐齒輪的強(qiáng)度計(jì)算 ............................................12 2.5.1 單位齒長(zhǎng)圓周力 ...................................................12 2.5.2 齒輪彎曲強(qiáng)度 .....................................................13 2.5.3 輪齒接觸強(qiáng)度 .....................................................14 2.6 主減速器錐齒輪軸承的設(shè)計(jì)計(jì)算 ........................................14 2.6.1 錐齒輪齒面上的作用力 .............................................14 2.6.2 錐齒輪軸承的載荷 .................................................15 2.6.3 錐齒輪軸承型號(hào)的確定 .............................................18 第三章 差速器設(shè)計(jì) ........................................................19 3.1 差速器結(jié)構(gòu)形式選擇 ..................................................19 3.2 普通錐齒輪式差速器齒輪設(shè)計(jì) ..........................................20 3.3 差速器齒輪的材料 ....................................................22 3.4 普通錐齒輪式差速器齒輪強(qiáng)度計(jì)算 ......................................22 第四章 驅(qū)動(dòng)車輪的傳動(dòng)裝置設(shè)計(jì) ..........................................23 4.1 半軸的型式 ..........................................................23 4.2 半軸的設(shè)計(jì)與計(jì)算 ....................................................24 4.2.1 半浮式半軸的設(shè)計(jì)計(jì)算 .............................................25 4.3 半軸的結(jié)構(gòu)設(shè)計(jì)及材料與熱處理 ........................................27 第五章 驅(qū)動(dòng)橋殼設(shè)計(jì) .....................................................28 5.1 橋殼的結(jié)構(gòu)型式 ......................................................28 5.2 橋殼的受力分析及強(qiáng)度計(jì)算 ............................................29 第六章 結(jié)論 ...............................................................30 致 謝 ..................................................................31 參 考 文 獻(xiàn) ...............................................................31 附件清單 ..................................................................33 0 引言 本課題是對(duì)汽車驅(qū)動(dòng)橋的結(jié)構(gòu)設(shè)計(jì)。故本說明書將對(duì)驅(qū)動(dòng)橋及其主要零部件的結(jié)構(gòu) 型式與設(shè)計(jì)計(jì)算作一一介紹。 驅(qū)動(dòng)橋的設(shè)計(jì),由驅(qū)動(dòng)橋的結(jié)構(gòu)組成、功用、工作特點(diǎn)及設(shè)計(jì)要求講起,詳細(xì)地分 析了驅(qū)動(dòng)橋總成的結(jié)構(gòu)型式及布置方法;全面介紹了驅(qū)動(dòng)橋車輪的傳動(dòng)裝置和橋殼的各 種結(jié)構(gòu)型式與設(shè)計(jì)計(jì)算方法。 汽車驅(qū)動(dòng)橋是汽車的重大總成,承載著汽車的滿載簧荷重及地面經(jīng)車輪、車架及承 載式車身經(jīng)懸架給予的鉛垂力、縱向力、橫向力及其力矩,以及沖擊載荷;驅(qū)動(dòng)橋還傳 遞著傳動(dòng)系中的最大轉(zhuǎn)矩,橋殼還承受著反作用力矩。汽車驅(qū)動(dòng)橋結(jié)構(gòu)型式和設(shè)計(jì)參數(shù) 除對(duì)汽車的可靠性與耐久性有重要影響外,也對(duì)汽車的行駛性能如動(dòng)力性、經(jīng)濟(jì)性、平 順性、通過性、機(jī)動(dòng)性和操動(dòng)穩(wěn)定性等有直接影響。另外,汽車驅(qū)動(dòng)橋在汽車的各種總 成中也是涵蓋機(jī)械零件、部件、分總成等的品種最多的大總成。例如,驅(qū)動(dòng)橋包含主減 速器、差速器、驅(qū)動(dòng)車輪的傳動(dòng)裝置(半軸及輪邊減速器) 、橋殼和各種齒輪。由上述可 見,汽車驅(qū)動(dòng)橋設(shè)計(jì)涉及的機(jī)械零部件及元件的品種極為廣泛,對(duì)這些零部件、元件及 總成的制造也幾乎要設(shè)計(jì)到所有的現(xiàn)代機(jī)械制造工藝。因此,通過對(duì)汽車驅(qū)動(dòng)橋的學(xué)習(xí) 和設(shè)計(jì)實(shí)踐,可以更好的學(xué)習(xí)并掌握現(xiàn)代汽車設(shè)計(jì)與機(jī)械設(shè)計(jì)的全面知識(shí)和技能。 本課題的設(shè)計(jì)依據(jù): 發(fā)動(dòng)機(jī)排量 1997ML 最大功率/轉(zhuǎn)速 110/6000 KW/RPM 最大轉(zhuǎn)矩/轉(zhuǎn)速 186/5000 NM/RPM 最高車速 Vmax=180km/h 輪距 1450mm 車輪滾動(dòng)半徑 R=0.312m 主減速比 3.91 有以下兩大難題,一是將發(fā)動(dòng)機(jī)輸出扭矩通過萬向傳動(dòng)軸將動(dòng)力傳遞到后輪子上, 達(dá)到更好的車輪牽引力與轉(zhuǎn)向力的有效發(fā)揮,從而提高汽車的行駛能力。二是差速器向 兩邊半軸傳遞動(dòng)力的同時(shí),允許兩邊半軸以不同的轉(zhuǎn)速旋轉(zhuǎn),滿足兩邊車輪盡可能以純 1 滾動(dòng)的形式作不等距行駛,減少輪胎與地面的摩擦。 本課題的設(shè)計(jì)思路可分為以下幾點(diǎn):首先選擇初始方案,該轎車屬于普及型轎車, 采用后橋驅(qū)動(dòng),所以設(shè)計(jì)的驅(qū)動(dòng)橋結(jié)構(gòu)需要符合普及型轎車的結(jié)構(gòu)要求;接著選擇各部 件的結(jié)構(gòu)形式;最后選擇各部件的具體參數(shù),設(shè)計(jì)出各主要尺寸。 所設(shè)計(jì)的轎車驅(qū)動(dòng)橋制造工藝性好、外形美觀,工作更穩(wěn)定、可靠。該驅(qū)動(dòng)橋設(shè)計(jì) 大大降低了制造成本,同時(shí)驅(qū)動(dòng)橋使用維護(hù)成本也降低了。驅(qū)動(dòng)橋結(jié)構(gòu)符合其整體結(jié)構(gòu) 要求。設(shè)計(jì)的產(chǎn)品達(dá)到了結(jié)構(gòu)簡(jiǎn)單,修理、保養(yǎng)方便;機(jī)件工藝性好,制造容易的要求。 目前我國(guó)正在大力發(fā)展汽車產(chǎn)業(yè),采用后輪驅(qū)動(dòng)汽車的平衡性和操作性都將會(huì)有很大 的提高。后輪驅(qū)動(dòng)的汽車加速時(shí),牽引力將不會(huì)由前輪發(fā)出,所以在加速轉(zhuǎn)彎時(shí),司機(jī) 就會(huì)感到有更大的橫向握持力,操作性能變好。維修費(fèi)用低也是后輪驅(qū)動(dòng)的一個(gè)優(yōu)點(diǎn), 盡管由于構(gòu)造和車型的不同,這種費(fèi)用將會(huì)有很大的差別。如果你的變速器出了故障, 對(duì)于后輪驅(qū)動(dòng)的汽車就不需要對(duì)差速器進(jìn)行維修,但是對(duì)于前輪驅(qū)動(dòng)的汽車來說也許就 有這個(gè)必要了,因?yàn)檫@兩個(gè)部件是做在一起的。 所以后輪驅(qū)動(dòng)必然會(huì)使得乘車更加安全、舒適,從而帶來可觀的經(jīng)濟(jì)效益。 第一章 總體方案論證 驅(qū)動(dòng)橋處于動(dòng)力傳動(dòng)系的末端,其基本功能是增大由傳動(dòng)軸或變速器傳來的轉(zhuǎn)矩,并 將動(dòng)力合理地分配給左、右驅(qū)動(dòng)輪,另外還承受作用于路面和車架或車身之間的垂直力 力和橫向力。驅(qū)動(dòng)橋一般由主減速器、差速器、車輪傳動(dòng)裝置和驅(qū)動(dòng)橋殼等組成。 驅(qū)動(dòng)橋設(shè)計(jì)應(yīng)當(dāng)滿足如下基本要求: a)所選擇的主減速比應(yīng)能保證汽車具有最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。 b)外形尺寸要小,保證有必要的離地間隙。 c)齒輪及其它傳動(dòng)件工作平穩(wěn),噪聲小。 d)在各種轉(zhuǎn)速和載荷下具有高的傳動(dòng)效率。 e)在保證足夠的強(qiáng)度、剛度條件下,應(yīng)力求質(zhì)量小,尤其是簧下質(zhì)量應(yīng)盡量小,以 改善汽車平順性。 2 f)與懸架導(dǎo)向機(jī)構(gòu)運(yùn)動(dòng)協(xié)調(diào),對(duì)于轉(zhuǎn)向驅(qū)動(dòng)橋,還應(yīng)與轉(zhuǎn)向機(jī)構(gòu)運(yùn)動(dòng)協(xié)調(diào)。 g)結(jié)構(gòu)簡(jiǎn)單,加工工藝性好,制造容易,拆裝,調(diào)整方便。 驅(qū)動(dòng)橋的結(jié)構(gòu)型式按工作特性分,可以歸并為兩大類,即非斷開式驅(qū)動(dòng)橋和斷開式 驅(qū)動(dòng)橋。當(dāng)驅(qū)動(dòng)車輪采用非獨(dú)立懸架時(shí),應(yīng)該選用非斷開式驅(qū)動(dòng)橋;當(dāng)驅(qū)動(dòng)車輪采用獨(dú) 立懸架時(shí),則應(yīng)該選用斷開式驅(qū)動(dòng)橋。因此,前者又稱為非獨(dú)立懸架驅(qū)動(dòng)橋;后者稱為 獨(dú)立懸架驅(qū)動(dòng)橋。獨(dú)立懸架驅(qū)動(dòng)橋結(jié)構(gòu)叫復(fù)雜,但可以大大提高汽車在不平路面上的行 駛平順性。 1.1 非斷開式驅(qū)動(dòng)橋 普通非斷開式驅(qū)動(dòng)橋,由于結(jié)構(gòu)簡(jiǎn)單、造價(jià)低廉、工作可靠,廣泛用在各種載貨汽 車、客車和公共汽車上,在多數(shù)的越野汽車和部分轎車上也采用這種結(jié)構(gòu)。他們的具體 結(jié)構(gòu)、特別是橋殼結(jié)構(gòu)雖然各不相同,但是有一個(gè)共同特點(diǎn),即橋殼是一根支承在左右 驅(qū)動(dòng)車輪上的剛性空心梁,齒輪及半軸等傳動(dòng)部件安裝在其中。這時(shí)整個(gè)驅(qū)動(dòng)橋、驅(qū)動(dòng) 車輪及部分傳動(dòng)軸均屬于簧下質(zhì)量,汽車簧下質(zhì)量較大,這是它的一個(gè)缺點(diǎn)。 驅(qū)動(dòng)橋的輪廓尺寸主要取決于主減速器的型式。在汽車輪胎尺寸和驅(qū)動(dòng)橋下的最小 離地間隙已經(jīng)確定的情況下,也就限定了主減速器從動(dòng)齒輪直徑的尺寸。在給定速比的 條件下,如果單級(jí)主減速器不能滿足離地間隙要求,可該用雙級(jí)結(jié)構(gòu)。在雙級(jí)主減速器 中,通常把兩級(jí)減速器齒輪放在一個(gè)主減速器殼體內(nèi),也可以將第二級(jí)減速齒輪作為輪 邊減速器。對(duì)于輪邊減速器:越野汽車為了提高離地間隙,可以將一對(duì)圓柱齒輪構(gòu)成的 輪邊減速器的主動(dòng)齒輪置于其從動(dòng)齒輪的垂直上方;公共汽車為了降低汽車的質(zhì)心高度 和車廂地板高度,以提高穩(wěn)定性和乘客上下車的方便,可將輪邊減速器的主動(dòng)齒輪置于 其從動(dòng)齒輪的垂直下方;有些雙層公共汽車為了進(jìn)一步降低車廂地板高度,在采用圓柱 齒輪輪邊減速器的同時(shí),將主減速器及差速器總成也移到一個(gè)驅(qū)動(dòng)車輪的旁邊。 在少數(shù)具有高速發(fā)動(dòng)機(jī)的大型公共汽車、多橋驅(qū)動(dòng)汽車和超重型載貨汽車上,有時(shí) 采用蝸輪式主減速器,它不僅具有在質(zhì)量小、尺寸緊湊的情況下可以得到大的傳動(dòng)比以 及工作平滑無聲的優(yōu)點(diǎn),而且對(duì)汽車的總體布置很方便。 1.2 斷開式驅(qū)動(dòng)橋 3 斷開式驅(qū)動(dòng)橋區(qū)別于非斷開式驅(qū)動(dòng)橋的明顯特點(diǎn)在于前者沒有一個(gè)連接左右驅(qū)動(dòng)車 輪的剛性整體外殼或梁。斷開式驅(qū)動(dòng)橋的橋殼是分段的,并且彼此之間可以做相對(duì)運(yùn)動(dòng), 所以這種橋稱為斷開式的。另外,它又總是與獨(dú)立懸掛相匹配,故又稱為獨(dú)立懸掛驅(qū)動(dòng) 橋。這種橋的中段,主減速器及差速器等是懸置在車架橫粱或車廂底板上,或與脊梁式 車架相聯(lián)。主減速器、差速器與傳動(dòng)軸及一部分驅(qū)動(dòng)車輪傳動(dòng)裝置的質(zhì)量均為簧上質(zhì)量。 兩側(cè)的驅(qū)動(dòng)車輪由于采用獨(dú)立懸掛則可以彼此致立地相對(duì)于車架或車廂作上下擺動(dòng),相 應(yīng)地就要求驅(qū)動(dòng)車輪的傳動(dòng)裝置及其外殼或套管作相應(yīng)擺動(dòng)。 汽車懸掛總成的類型及其彈性元件與減振裝置的工作特性是決定汽車行駛平順性的 主要因素,而汽車簧下部分質(zhì)量的大小,對(duì)其平順性也有顯著的影響。斷開式驅(qū)動(dòng)橋的 簧下質(zhì)量較小,又與獨(dú)立懸掛相配合,致使驅(qū)動(dòng)車輪與地面的接觸情況及對(duì)各種地形的 適應(yīng)性比較好,由此可大大地減小汽車在不平路面上行駛時(shí)的振動(dòng)和車廂傾斜,提高汽 車的行駛平順性和平均行駛速度,減小車輪和車橋上的動(dòng)載荷及零件的損壞,提高其可 靠性及使用壽命。但是,由于斷開式驅(qū)動(dòng)橋及與其相配的獨(dú)立懸掛的結(jié)構(gòu)復(fù)雜,故這種 結(jié)構(gòu)主要見于對(duì)行駛平順性要求較高的一部分轎車及一些越野汽車上,且后者多屬于輕 型以下的越野汽車或多橋驅(qū)動(dòng)的重型越野汽車。 1.3 多橋驅(qū)動(dòng)的布置 為了提高裝載量和通過性,有些重型汽車及全部中型以上的越野汽車都是采用多橋 驅(qū)動(dòng),常采用的有 4×4、6×6、8×8 等驅(qū)動(dòng)型式。在多橋驅(qū)動(dòng)的情況下,動(dòng)力經(jīng)分動(dòng)器 傳給各驅(qū)動(dòng)橋的方式有兩種。相應(yīng)這兩種動(dòng)力傳遞方式,多橋驅(qū)動(dòng)汽車各驅(qū)動(dòng)橋的布置 型式分為非貫通式與貫通式。前者為了把動(dòng)力經(jīng)分動(dòng)器傳給各驅(qū)動(dòng)橋,需分別由分動(dòng)器 經(jīng)各驅(qū)動(dòng)橋自己專用的傳動(dòng)軸傳遞動(dòng)力,這樣不僅使傳動(dòng)軸的數(shù)量增多,且造成各驅(qū)動(dòng) 橋的零件特別是橋殼、半軸等主要零件不能通用。而對(duì) 8×8 汽車來說,這種非貫通式驅(qū) 動(dòng)橋就更不適宜,也難于布置了。 為了解決上述問題,現(xiàn)代多橋驅(qū)動(dòng)汽車都是采用貫通式驅(qū)動(dòng)橋的布置型式。 在貫通式驅(qū)動(dòng)橋的布置中,各橋的傳動(dòng)軸布置在同一縱向鉛垂平面內(nèi),并且各驅(qū)動(dòng) 橋不是分別用自己的傳動(dòng)軸與分動(dòng)器直接聯(lián)接,而是位于分動(dòng)器前面的或后面的各相鄰 兩橋的傳動(dòng)軸,是串聯(lián)布置的。汽車前后兩端的驅(qū)動(dòng)橋的動(dòng)力,是經(jīng)分動(dòng)器并貫通中間 4 橋而傳遞的。其優(yōu)點(diǎn)是,不僅減少了傳動(dòng)軸的數(shù)量,而且提高了各驅(qū)動(dòng)橋零件的相互通 用性,并且簡(jiǎn)化了結(jié)構(gòu)、減小了體積和質(zhì)量。這對(duì)于汽車的設(shè)計(jì)(如汽車的變型)、制造 和維修,都帶來方便。 由于非斷開式驅(qū)動(dòng)橋結(jié)構(gòu)簡(jiǎn)單、造價(jià)低廉、工作可靠,查閱資料,參照國(guó)內(nèi)相關(guān)轎 車的設(shè)計(jì),最后本課題選用非斷開式驅(qū)動(dòng)橋。 其結(jié)構(gòu)如圖 1-1 所示: 1 2 3 4 5 6 7 8 9 10 1-半軸 2-圓錐滾子軸承 3-支承螺栓 4-主減速器從動(dòng)錐齒輪 5-油封 6-主減速器主動(dòng)錐齒 輪 7-彈簧座 8-墊圈 9-輪轂 10-調(diào)整螺母 圖 1-1 驅(qū)動(dòng)橋 第二章 主減速器設(shè)計(jì) 主減速器是汽車傳動(dòng)系中減小轉(zhuǎn)速、增大扭矩的主要部件,它是依靠齒數(shù)少的錐齒 輪帶動(dòng)齒數(shù)多的錐齒輪。對(duì)發(fā)動(dòng)機(jī)縱置的汽車,其主減速器還利用錐齒輪傳動(dòng)以改變動(dòng) 力方向。由于汽車在各種道路上行使時(shí),其驅(qū)動(dòng)輪上要求必須具有一定的驅(qū)動(dòng)力矩和轉(zhuǎn) 速,在動(dòng)力向左右驅(qū)動(dòng)輪分流的差速器之前設(shè)置一個(gè)主減速器后,便可使主減速器前面 的傳動(dòng)部件如變速器、萬向傳動(dòng)裝置等所傳遞的扭矩減小,從而可使其尺寸及質(zhì)量減小、 操縱省力。 驅(qū)動(dòng)橋中主減速器、差速器設(shè)計(jì)應(yīng)滿足如下基本要求: 5 a)所選擇的主減速比應(yīng)能保證汽車既有最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。 b)外型尺寸要小,保證有必要的離地間隙;齒輪其它傳動(dòng)件工作平穩(wěn),噪音小。 c)在各種轉(zhuǎn)速和載荷下具有高的傳動(dòng)效率;與懸架導(dǎo)向機(jī)構(gòu)與動(dòng)協(xié)調(diào)。 d)在保證足夠的強(qiáng)度、剛度條件下,應(yīng)力求質(zhì)量小,以改善汽車平順性。 e)結(jié)構(gòu)簡(jiǎn)單,加工工藝性好,制造容易,拆裝、調(diào)整方便。 2.1 主減速器結(jié)構(gòu)方案分析 主減速器的結(jié)構(gòu)形式主要是根據(jù)齒輪類型、減速形式的不同而不同。 2.1.1 螺旋錐齒輪傳動(dòng) 圖 2-1 螺旋錐齒輪傳動(dòng) 按齒輪副結(jié)構(gòu)型式分,主減速器的齒輪傳動(dòng)主要有螺旋錐齒輪式傳動(dòng)、雙曲面齒輪 式傳動(dòng)、圓柱齒輪式傳動(dòng)(又可分為軸線固定式齒輪傳動(dòng)和軸線旋轉(zhuǎn)式齒輪傳動(dòng)即行星 齒輪式傳動(dòng))和蝸桿蝸輪式傳動(dòng)等形式。 在發(fā)動(dòng)機(jī)橫置的汽車驅(qū)動(dòng)橋上,主減速器往往采用簡(jiǎn)單的斜齒圓柱齒輪;在發(fā)動(dòng)機(jī) 縱置的汽車驅(qū)動(dòng)橋上,主減速器往往采用圓錐齒輪式傳動(dòng)或準(zhǔn)雙曲面齒輪式傳動(dòng)。 為了減少驅(qū)動(dòng)橋的外輪廓尺寸,主減速器中基本不用直齒圓錐齒輪而采用螺旋錐齒 輪。因?yàn)槁菪F齒輪不發(fā)生根切(齒輪加工中產(chǎn)生輪齒根部切薄現(xiàn)象,致使齒輪強(qiáng)度大 大降低)的最小齒數(shù)比直齒輪的最小齒數(shù)少,使得螺旋錐齒輪在同樣的傳動(dòng)比下主減速 器結(jié)構(gòu)較緊湊。此外,螺旋錐齒輪還具有運(yùn)轉(zhuǎn)平穩(wěn)、噪聲小等優(yōu)點(diǎn),汽車上獲得廣泛應(yīng) 用。 近年來,有些汽車的主減速器采用準(zhǔn)雙曲面錐齒輪(車輛行業(yè)中簡(jiǎn)稱雙曲面?zhèn)鲃?dòng)) 6 傳動(dòng)。準(zhǔn)雙曲面錐齒輪傳動(dòng)與圓錐齒輪相比,準(zhǔn)雙曲面齒輪傳動(dòng)不僅工作平穩(wěn)性更好, 彎曲強(qiáng)度和接觸強(qiáng)度更高,同時(shí)還可使主動(dòng)齒輪的軸線相對(duì)于從動(dòng)齒輪軸線偏移。當(dāng)主 動(dòng)準(zhǔn)雙曲面齒輪軸線向下偏移時(shí),可降低主動(dòng)錐齒輪和傳動(dòng)軸位置,從而有利于降低車 身及整車重心高度,提高汽車行使的穩(wěn)定性。但是,準(zhǔn)雙曲面齒輪傳遞轉(zhuǎn)矩時(shí),齒面間 有較大的相對(duì)滑動(dòng),且齒面間壓力很大,齒面油膜很容易被破壞。為減少摩擦,提高效 率,必須采用含防刮傷添加劑的雙曲面齒輪油,絕不允許用普通齒輪油代替,否則將時(shí) 齒面迅速擦傷和磨損,大大降低使用壽命。 查閱文獻(xiàn)[1]、[2],經(jīng)方案論證,主減速器的齒輪選用螺旋錐齒輪傳動(dòng)形式(如圖 2-1 示) 。螺旋錐齒輪傳動(dòng)的主、從動(dòng)齒輪軸線垂直相交于一點(diǎn),齒輪并不同時(shí)在全長(zhǎng)上 嚙合,而是逐漸從一端連續(xù)平穩(wěn)地轉(zhuǎn)向另一端。另外,由于輪齒端面重疊的影響,至少 有兩對(duì)以上的輪齒同時(shí)捏合,所以它工作平穩(wěn)、能承受較大的負(fù)荷、制造也簡(jiǎn)單。為保 證齒輪副的正確嚙合,必須將支承軸承預(yù)緊,提高支承剛度,增大殼體剛度。 2.1.2 結(jié)構(gòu)形式 為了滿足不同的使用要求,主減速器的結(jié)構(gòu)形式也是不同的。 按參加減速傳動(dòng)的齒輪副數(shù)目分,有單級(jí)式主減速器和雙級(jí)式主減速器、雙速主減 速器、雙級(jí)減速配以輪邊減速器等。雙級(jí)式主減速器應(yīng)用于大傳動(dòng)比的中、重型汽車上, 若其第二級(jí)減速器齒輪有兩副,并分置于兩側(cè)車輪附近,實(shí)際上成為獨(dú)立部件,則稱輪 邊減速器。單級(jí)式主減速器應(yīng)用于轎車和一般輕、中型載貨汽車。單級(jí)主減速器由一對(duì) 圓錐齒輪組成,具有結(jié)構(gòu)簡(jiǎn)單、質(zhì)量小、成本低、使用簡(jiǎn)單等優(yōu)點(diǎn)。 查閱文獻(xiàn)[1]、[2],經(jīng)方案論證,本設(shè)計(jì)主減速器采用單級(jí)主減速器。其傳動(dòng)比 i0 一般小于等于 7。 2.2 主減速器主、從動(dòng)錐齒輪的支承方案 主減速器中心必須保證主從動(dòng)齒輪具有良好的嚙合狀況,才能使它們很好地工作。 齒輪的正確嚙合,除了與齒輪的加工質(zhì)量裝配調(diào)整及軸承主減速器殼體的剛度有關(guān)以外, 還與齒輪的支承剛度密切相關(guān)。 3.2.1 主動(dòng)錐齒輪的支承 7 圖 2-2 主動(dòng)錐齒輪懸臂式 主動(dòng)錐齒輪的支承形式可分為懸臂式支承和跨置式支承兩種。查閱資料、文獻(xiàn),經(jīng) 方案論證,采用懸臂式支承結(jié)構(gòu)(如圖 2-2 示) 。圓錐滾子軸承大端向外,這樣可以增加 支撐間的距離 b,并可減小懸臂長(zhǎng)度 a,可以改善支承剛度。 懸臂式支承的優(yōu)點(diǎn)是結(jié)構(gòu)簡(jiǎn)單。缺點(diǎn)是支承剛度較差。這種結(jié)構(gòu)主要用在傳遞轉(zhuǎn)矩 較小的乘用車,輕型商用車的單級(jí)主減速器中。所以綜合得出本設(shè)計(jì)選用懸臂式支承。 圖 2-3 從動(dòng)錐齒輪支撐形式 2.2.2 從動(dòng)錐齒輪的支承 從動(dòng)錐齒輪采用圓錐滾子軸承支承(如圖 2-3 示) 。為了增加支承剛度,兩軸承的圓 錐滾子大端應(yīng)向內(nèi),以減小尺寸 c+d。為了使從動(dòng)錐齒輪背面的差速器殼體處有足夠的位 置設(shè)置加強(qiáng)肋以增強(qiáng)支承穩(wěn)定性,c+d 應(yīng)不小于從動(dòng)錐齒輪大端分度圓直徑的 70%。為了 使載荷能均勻分配在兩軸承上,應(yīng)是 c 等于或大于 d。 2.3 主減速器錐齒輪設(shè)計(jì) 主減速比 i 、驅(qū)動(dòng)橋的離地間隙和計(jì)算載荷,是主減速器設(shè)計(jì)的原始數(shù)據(jù),應(yīng)在0 汽車總體設(shè)計(jì)時(shí)就確定。 2.3.1 主減速比 i 的確定0 8 主減速比對(duì)主減速器的結(jié)構(gòu)型式、輪廓尺寸、質(zhì)量大小以及當(dāng)變速器處于最高 檔位時(shí)汽車的動(dòng)力性和燃料經(jīng)濟(jì)性都有直接影響。i 的選擇應(yīng)在汽車總體設(shè)計(jì)時(shí)和傳動(dòng)0 系的總傳動(dòng)比 i 一起由整車動(dòng)力計(jì)算來確定??衫迷诓煌?i 下的功率平衡田來研究 i0 對(duì)汽車動(dòng)力性的影響。通過優(yōu)化設(shè)計(jì),對(duì)發(fā)動(dòng)機(jī)與傳動(dòng)系參數(shù)作最佳匹配的方法來選擇0 i 值,可使汽車獲得最佳的動(dòng)力性和燃料經(jīng)濟(jì)性。 本設(shè)計(jì)給出了 i =3.910 從動(dòng)錐齒輪計(jì)算轉(zhuǎn)矩 Tcs Tcs= (2-3)2rmGin??? 式中: Tce—計(jì)算轉(zhuǎn)矩,N·m; n—計(jì)算驅(qū)動(dòng)橋數(shù),1; im—主減速器從動(dòng)齒輪到車輪間的傳動(dòng)比,i f=1; —滿載狀態(tài)下一個(gè)驅(qū)動(dòng)橋上的靜載荷(N) , =11858N;2G2G ηm—主減速器主動(dòng)齒輪到車輪間的傳動(dòng)效率,η=1; —汽車最大加速的時(shí)的后軸負(fù)荷轉(zhuǎn)移系數(shù), =1.3;2? 2m? —輪胎與路面間的附著系數(shù), =0.85;?? —車輪滾動(dòng)半徑, =0.312m;r r 代入式(3-3) ,有: Tcs=4088 N·m Tce=2941.7N·m 主動(dòng)斜齒圓柱齒輪的計(jì)算轉(zhuǎn)矩為 (2-5)GoziTce?? 式中: 為主動(dòng)斜齒圓柱齒輪的計(jì)算轉(zhuǎn)矩,Nm;zT 9 為主傳動(dòng)比,取 3.91;oi 為主、從動(dòng)斜齒圓柱齒輪間的傳動(dòng)效率。 (計(jì)算時(shí),對(duì)于弧齒斜齒圓柱齒輪副,G? 取 95%;對(duì)于雙曲面齒輪副,當(dāng) >6 時(shí), 取 85%,當(dāng) =e,由此得 X=0.4,Y=1.7。arF 18 另外查得載荷系數(shù) fp=1.2。 P=fp(XF r+YFa) (2-21) 將各參數(shù)代入式(3-21)中,有: P=78990N 軸承應(yīng)有的基本額定動(dòng)負(fù)荷 C′ r C′ r= (2-22) 10h36tnLPf 式中: ft—溫度系數(shù),查文獻(xiàn)[4],得 ft=1; ε—滾子軸承的壽命系數(shù),查文獻(xiàn)[4],得 ε=10/3; n—軸承轉(zhuǎn)速,426.3r/min; L′ h—軸承的預(yù)期壽命,5000h; 將各參數(shù)代入式(2-22)中,有; C′ r=59558N 初選軸承型號(hào) 查文獻(xiàn)[3],初步選擇 Cr =61500N> C′ r的圓錐滾子軸承 32304。 驗(yàn)算 32304 圓錐滾子軸承的壽命 Lh = (2-23) εtrf167nP?????? 將各參數(shù)代入式(2-21)中,有: Lh =4879h<5000h 所選擇 32304 圓錐滾子軸承的壽命低于預(yù)期壽命,故選 32304 軸承,經(jīng)檢驗(yàn)?zāi)軡M足。 軸承 B、軸承 C、軸承 D、軸承 E 強(qiáng)度都可按此方法得出,其強(qiáng)度均能夠滿足要求。 第三章 差速器設(shè)計(jì) 19 汽車在行使過程中,左右車輪在同一時(shí)間內(nèi)所滾過的路程往往是不相等的,左右兩 輪胎內(nèi)的氣壓不等、胎面磨損不均勻、兩車輪上的負(fù)荷不均勻而引起車輪滾動(dòng)半徑不相 等;左右兩輪接觸的路面條件不同,行使阻力不等等。這樣,如果驅(qū)動(dòng)橋的左、右車輪 剛性連接,則不論轉(zhuǎn)彎行使或直線行使,均會(huì)引起車輪在路面上的滑移或滑轉(zhuǎn),一方面 會(huì)加劇輪胎磨損、功率和燃料消耗,另一方面會(huì)使轉(zhuǎn)向沉重,通過性和操縱穩(wěn)定性變壞。 為此,在驅(qū)動(dòng)橋的左右車輪間都裝有輪間差速器。 差速器是個(gè)差速傳動(dòng)機(jī)構(gòu),用來在兩輸出軸間分配轉(zhuǎn)矩,并保證兩輸出軸有可能以 不同的角速度轉(zhuǎn)動(dòng),用來保證各驅(qū)動(dòng)輪在各種運(yùn)動(dòng)條件下的動(dòng)力傳遞,避免輪胎與地面 間打滑。差速器按其結(jié)構(gòu)特征可分為齒輪式、凸輪式、蝸輪式和牙嵌自由輪式等多種形 式。 3.1 差速器結(jié)構(gòu)形式選擇 汽車上廣泛采用的差速器為對(duì)稱錐齒輪式差速器,具有結(jié)構(gòu)簡(jiǎn)單、質(zhì)量較小等優(yōu)點(diǎn), 應(yīng)用廣泛。它可分為普通錐齒輪式差速器、摩擦片式差速器和強(qiáng)制鎖止式差速器。 普通齒輪式差速器的傳動(dòng)機(jī)構(gòu)為齒輪式。齒輪差速器要圓錐齒輪式和圓柱齒輪式兩 種。 強(qiáng)制鎖止式差速器就是在對(duì)稱式錐齒輪差速器上設(shè)置差速鎖。當(dāng)一側(cè)驅(qū)動(dòng)輪滑轉(zhuǎn)時(shí), 可利用差速鎖使差速器不起差速作用。差速鎖在軍用汽車上應(yīng)用較廣。 查閱文獻(xiàn)[5]經(jīng)方案論證,差速器結(jié)構(gòu)形式選擇對(duì)稱式圓錐行星齒輪差速器。 普通的對(duì)稱式圓錐行星齒輪差速器由差速器左、右殼,2 個(gè)半軸齒輪,4 個(gè)行星齒輪 (少數(shù)汽車采用 3 個(gè)行星齒輪,小型、微型汽車多采用 2 個(gè)行星齒輪),行星齒輪軸(不少 裝 4 個(gè)行星齒輪的差逮器采用十字軸結(jié)構(gòu)),半軸齒輪及行星齒輪墊片等組成。由于其結(jié) 構(gòu)簡(jiǎn)單、工作平穩(wěn)、制造方便、用在公路汽車上也很可靠等優(yōu)點(diǎn),最廣泛地用在轎車、 客車和各種公路用載貨汽車上.有些越野汽車也采用了這種結(jié)構(gòu),但用到越野汽車上需 要采取防滑措施。例如加進(jìn)摩擦元件以增大其內(nèi)摩擦,提高其鎖緊系數(shù);或加裝可操縱 的、能強(qiáng)制鎖住差速器的裝置——差速鎖等。 3.2 普通錐齒輪式差速器齒輪設(shè)計(jì) 20 a) 行星齒輪數(shù) n 通常情況下,轎車的行星齒輪數(shù) n=2。 b) 行星齒輪球面半徑 Rb 行星齒輪球面半徑 Rb反映了差速器錐齒輪節(jié)錐矩的大小和承載能力。 Rb=Kb (3-1)3dT 式中: Kb—行星齒輪球面半徑系數(shù),K b=2.5~3.0,對(duì)于有兩個(gè)行星齒輪的轎車取最大值; 取 3.0 Td—差速器計(jì)算轉(zhuǎn)矩,2941.7N·m; 將各參數(shù)代入式(3-1) ,有: Rb=44 mm 行星齒輪節(jié)錐距 A0=43.5mm c)行星齒輪和半軸齒輪齒數(shù) z1和 z2 為了使輪齒有較高的強(qiáng)度,z 1一般不少于 10。半軸齒輪齒數(shù) z2在 14~25 選用。大 多數(shù)汽車的半軸齒輪與行星齒輪的齒數(shù)比 在 1.5~2.0 的范圍內(nèi),且半軸齒輪齒數(shù)和必21z 須能被行星齒輪齒數(shù)整除。 查閱資料,經(jīng)方案論證,初定半軸齒輪與行星齒輪的齒數(shù)比 =2,半軸齒輪齒數(shù)21z z2=24,行星齒輪的齒數(shù) z 1=12。 d) 行星齒輪和半軸齒輪節(jié)錐角 γ 1、γ 2及模數(shù) m 行星齒輪和半軸齒輪節(jié)錐角 γ 1、γ 2分別為 γ 1= (3-2)2zarctn?????? γ 2= (3-3)1rtz 將各參數(shù)分別代入式(3—2)與式(3—3) ,有: γ 1=27°,γ 2=63° 21 錐齒輪大端模數(shù) m 為 m= (3-4)012Asinγz 將各參數(shù)代入式(3-4) ,有: m=3.29mm 查閱文獻(xiàn)[3],取模數(shù) m=3.3 e)半軸齒輪與行星齒輪齒形參數(shù) 按照文獻(xiàn)[3]中的設(shè)計(jì)計(jì)算方法進(jìn)行設(shè)計(jì)和計(jì)算,結(jié)果見表 3-1。 f)壓力角 α 汽車差速齒輪大都采用壓力角 α=22°30′,齒高系數(shù)為 0.8 的齒形。 表 3-1 半軸齒輪與行星齒輪參數(shù) 參 數(shù) 符 號(hào) 半軸齒輪 行星齒輪 分度圓直徑 d 100 50 齒頂高 ha 2.7 3.51 齒根高 hf 4.11 3.3 齒頂圓直徑 da 110.5 54 齒根圓直徑 df 98 46 齒頂角 θ a 3.14° 5.53° 齒根角 θ f 5.53° 3.14° 分度圓錐角 δ 63° 27° 頂錐角 δ a 66.1° 32.5° 根錐角 δ f 57.5° 24° 錐距 R 47 46 分度圓齒厚 s 6.45 6.67 齒面寬 b 12 12 g)行星齒輪軸用直徑 d 行星齒輪軸用直徑 d(mm)為 22 d= (3-5)??30cdT×1.σnr 式中: T0—差速器殼傳遞的轉(zhuǎn)矩,2941.7Nm; n—行星齒輪數(shù),2; rd—行星齒輪支承面中點(diǎn)到錐頂?shù)木嚯x,mm; [σ c]—支承面許用擠壓應(yīng)力,取 98 MPa; 將各參數(shù)代入式(3-5)中,有: d=21.2mm,取 22mm。 行星齒輪在軸上的支承長(zhǎng)度 L 為 L=1.1d=24.2mm 3.3 差速器齒輪的材料 差速器齒輪和主減速器齒輪一樣,基本上都是用滲碳合金鋼制造,目前用于制造差 速器錐齒輪的材料為 20CrMnTi、20CrMoTi、22CrMnMo 和 20CrMo 等。由于差速器齒輪輪 齒要求的精度較低,所以精鍛差速器齒輪工藝已被廣泛應(yīng)用。 3.4 普通錐齒輪式差速器齒輪強(qiáng)度計(jì)算 差速器齒輪的尺寸受結(jié)構(gòu)限制,而且承受的載荷較大,它不像主減速器齒輪那樣經(jīng) 常處于嚙合傳動(dòng)狀態(tài),只有當(dāng)汽車轉(zhuǎn)彎或左、右輪行使不同的路程時(shí),或一側(cè)車輪打滑 而滑轉(zhuǎn)時(shí),差速器齒輪才能有嚙合傳動(dòng)的相對(duì)運(yùn)動(dòng)。因此,對(duì)于差速器齒輪主要應(yīng)進(jìn)行 彎曲強(qiáng)度計(jì)算。輪齒彎曲應(yīng)力 σ w(MPa)為 σ w= (3-6)3smv2Tk×10bdJn 式中: n—行星齒輪數(shù),2; J—綜合系數(shù),取 0.224; b2—半軸齒輪齒寬,mm; 23 d2—半軸齒輪大端分度圓直徑,mm; T—半軸齒輪計(jì)算轉(zhuǎn)矩(Nm) ,T=0.6 T 0 ,1765; ks、k m、k v按照主減速器齒輪強(qiáng)度計(jì)算的有關(guān)轉(zhuǎn)矩選取; 將各參數(shù)代入式(4-6)中,有: σ w=938.5 MPa 按照文獻(xiàn)[1], 差速器齒輪的 σ w≤[σ w]=980 MPa,所以齒輪彎曲強(qiáng)度滿足要求。 第四章 驅(qū)動(dòng)車輪的傳動(dòng)裝置設(shè)計(jì) 驅(qū)動(dòng)車輪的傳動(dòng)裝置位于汽車傳動(dòng)系的末端,其功用是將轉(zhuǎn)矩由差速器半軸齒輪傳 給驅(qū)動(dòng)車輪。在斷開式驅(qū)動(dòng)橋和轉(zhuǎn)向驅(qū)動(dòng)橋中,驅(qū)動(dòng)車輪的傳動(dòng)裝置包括半軸和萬向節(jié) 傳動(dòng)裝置且多采用等速萬向節(jié)。在一般非斷開式驅(qū)動(dòng)橋上,驅(qū)動(dòng)車輪的傳動(dòng)裝置就是半 軸,這時(shí)半軸將差速器半軸齒輪與輪轂連接起來。在裝有輪邊減速器的驅(qū)動(dòng)橋上,半軸 將半軸齒輪與輪邊減速器的主動(dòng)齒輪連接起來。 4.1 半軸的型式 普通非斷開式驅(qū)動(dòng)橋的半軸,根據(jù)其外端的支承型式或受力狀況的不同而分為半浮 式、3/4 浮式和全浮式三種。 半浮式半軸以靠近外端的軸頸直接支承在置于橋殼外端內(nèi)孔中的軸承上,而端部則 以具有錐面的軸頸及鍵與車輪輪轂相固定,或以突緣直接與車輪輪盤及制動(dòng)鼓相聯(lián)接)。 因此,半浮式半軸除傳遞轉(zhuǎn)矩外,還要承受車輪傳來的彎矩。由此可見,半浮式半軸承 受的載荷復(fù)雜,但它具有結(jié)構(gòu)簡(jiǎn)單、質(zhì)量小、尺寸緊湊、造價(jià)低廉等優(yōu)點(diǎn)。用于質(zhì)量較 小、使用條件較好、承載負(fù)荷也不大的轎車和輕型載貨汽車。 3/4 浮式半軸的結(jié)構(gòu)特點(diǎn)是半軸外端僅有一個(gè)軸承并裝在驅(qū)動(dòng)橋殼半軸套管的端部, 直接支承著車輪輪轂,而半軸則以其端部與輪轂相固定。由于一個(gè)軸承的支承剛度較差, 因此這種半軸除承受全部轉(zhuǎn)矩外,彎矩得由半軸及半軸套管共同承受,即 3/4 浮式半軸 還得承受部分彎矩,后者的比例大小依軸承的結(jié)構(gòu)型式及其支承剛度、半軸的剛度等因 素決定。側(cè)向力引起的彎矩使軸承有歪斜的趨勢(shì),這將急劇降低軸承的壽命??捎糜谵I 24 車和輕型載貨汽車,但未得到推廣。 全浮式半軸的外端與輪轂相聯(lián),而輪轂又由一對(duì)軸承支承于橋殼的半軸套管上。多 采用一對(duì)圓錐滾子軸承支承輪轂,且兩軸承的圓錐滾子小端應(yīng)相向安裝并有一定的預(yù)緊, 調(diào)好后由鎖緊螺母予以鎖緊,很少采用球軸承的結(jié)構(gòu)方案。 由于車輪所承受的垂向力、縱向力和側(cè)向力以及由它們引起的彎矩都經(jīng)過輪轂、輪 轂軸承傳給橋殼,故全浮式半軸在理論上只承受轉(zhuǎn)矩而不承受彎矩。但在實(shí)際工作中由 于加工和裝配精度的影響及橋殼與軸承支承剛度的不足等原因,仍可能使全浮式半軸在 實(shí)際使用條件下承受一定的彎矩,彎曲應(yīng)力約為 5~70MPa。具有全浮式半軸的驅(qū)動(dòng)橋的 外端結(jié)構(gòu)較復(fù)雜,需采用形狀復(fù)雜且質(zhì)量及尺寸都較大的輪轂,制造成本較高,故轎車 及其他小型汽車不采用這種結(jié)構(gòu)。但由于其工作可靠,故廣泛用于輕型以上的各類汽車 上。 4.2 半軸的設(shè)計(jì)與計(jì)算 半軸的主要尺寸是它的直徑,設(shè)計(jì)與計(jì)算時(shí)首先應(yīng)合理地確定其計(jì)算載荷。 半軸的計(jì)算應(yīng)考慮到以下三種可能的載荷工況: a)縱向力 X2最大時(shí)(X 2=Z 2 )附著系數(shù)尹取 0.8,沒有側(cè)向力作用;? b)側(cè)向力 Y2最大時(shí),其最大值發(fā)生于側(cè)滑時(shí),為 Z2 中, ,側(cè)滑時(shí)輪胎與地面?zhèn)认?? 附著系數(shù) ,在計(jì)算中取 1.0,沒有縱向力作用;1? c)垂向力 Z2最大時(shí),這發(fā)生在汽車以可能的高速通過不平路面時(shí),其值為(Z 2-gw) kd,k d是動(dòng)載荷系數(shù),這時(shí)沒有縱向力和側(cè)向力的作用。 由于車輪承受的縱向力、側(cè)向力值的大小受車輪與地面最大附著力的限制,即: 2=X+Y? 故縱向力 X2最大時(shí)不會(huì)有側(cè)向力作用,而側(cè)向力 Y2最大時(shí)也不會(huì)有縱向力作用。 4.2.1 全浮式半軸的設(shè)計(jì)計(jì)算 本課題采用全浮式半軸,其詳細(xì)的計(jì)算校核如下: a)全浮式半軸計(jì)算載荷的確定 全浮式半軸只承受轉(zhuǎn)矩,其計(jì)算轉(zhuǎn)矩按下式進(jìn)行: 25 T=ξ Temaxig1i0 (4-1) 式中:ξ——差速器的轉(zhuǎn)矩分配系數(shù),對(duì)圓錐行星齒輪差速器可取 =0.6;? ig1——變速器 1 擋傳動(dòng)比; i0——主減速比。 已知:T emax=186Nm;i g1=4.17; i 0=3.91 ; =0.6ξ 計(jì)算結(jié)果: T=0.6×186×4.17×3.91 =1819.6N.m 在設(shè)計(jì)時(shí),全浮式半軸桿部直徑的初步選取可按下式進(jìn)行: (4-2) 33310(2.5~.18).96[]TdT????? 式中 d——半軸桿部直徑,mm; T——半軸的計(jì)算轉(zhuǎn)矩,Nrn; [ ]——半軸扭轉(zhuǎn)許用應(yīng)力,MPa。? 根據(jù)上式帶入 T=1819.6Nm,得: 32mm≤d≤32.6mm ?。篸=32mm 給定一個(gè)安全系數(shù) k=1.5 d=k×d =1.5×26 =48mm 全浮式半軸支承轉(zhuǎn)矩,其計(jì)算轉(zhuǎn)矩為: (4-3)22LrRrTX?? 三種半軸的扭轉(zhuǎn)應(yīng)力由下式計(jì)算: (4-4)3160d?? 26 式中 ——半軸的扭轉(zhuǎn)應(yīng)力,MPa;? T—一半軸的計(jì)算轉(zhuǎn)矩,T=1819.6Nm; d——半軸桿部直徑,d=32mm。 將數(shù)據(jù)帶入式(4-3) 、 (4-4)得: =528MPa? 半軸花鍵的剪切應(yīng)力為 (4-5) 310()/4bpBATzLjDd???? 半軸花鍵的擠壓應(yīng)力為 (4-6)2/)(]4/)[(10 3ABABpc ddLzT????????? 式中 T——半軸承受的最大轉(zhuǎn)矩,T=12215Nm; DB——半軸花鍵(軸)外徑,D B=48mm; dA——相配的花鍵孔內(nèi)徑,d A=42mm; z——花鍵齒數(shù); Lp——花鍵工作長(zhǎng)度,L p=48mm; B——花鍵齒寬,B=6qqmm; ——載荷分布的不均勻系數(shù),取 0.75。? 將數(shù)據(jù)帶入式(4-5) 、 (4-6)得: =68Mpab? =169MPac? 半軸的最大扭轉(zhuǎn)角為 (4-7)3108????GJTl 式中 T——半軸承受的最大轉(zhuǎn)矩,T=12215Nm; l——半軸長(zhǎng)度,l =725mm; G——材料的剪切彈性模量,MPa; 27 J——半軸橫截面的極慣性矩, mm 4。 將數(shù)據(jù)帶入式(4-7)得: = 8°? 半軸計(jì)算時(shí)的許用應(yīng)力與所選用的材料、加工方法、熱處理工藝及汽車的使用條 件有關(guān)。當(dāng)采用 40Cr,40MnB,40MnVB,40CrMnMo,40 號(hào)及 45 號(hào)鋼等作為全浮式半軸的 材料時(shí),其扭轉(zhuǎn)屈服極限達(dá)到 784MPa 左右。在保證安全系數(shù)在 1.3~1.6 范圍時(shí),半軸 扭轉(zhuǎn)許用應(yīng)力可取為[ =490~588MPa。]? 對(duì)于越野汽車、礦用汽車等使用條件差的汽車,應(yīng)該取較大的安全系數(shù),這時(shí)許用 應(yīng)力應(yīng)取小值;對(duì)于使用條件較好的公路汽車則可取較大的許用應(yīng)力。 當(dāng)傳遞最大轉(zhuǎn)矩時(shí),半軸花鍵的剪切應(yīng)力不應(yīng)超過 71.05MPa;擠壓應(yīng)力不應(yīng)該超過 196MPa,半軸單位長(zhǎng)度的最大轉(zhuǎn)角不應(yīng)大于 8°/m。 4.3 半軸的結(jié)構(gòu)設(shè)計(jì)及材料與熱處理 為了使半軸的花鍵內(nèi)徑不小于其桿部直徑,常常將加工花鍵的端部做得粗些,并適 當(dāng)?shù)販p小花鍵槽的深度,因此花鍵齒數(shù)必須相應(yīng)地增加,通常取 10 齒(轎車半軸)至 18 齒(載貨汽車半軸)。半軸的破壞形式多為扭轉(zhuǎn)疲勞破壞,因此在結(jié)構(gòu)設(shè)計(jì)上應(yīng)盡量增大 各過渡部分的圓角半徑以減小應(yīng)力集中。重型車半軸的桿部較粗,外端突緣也很大,當(dāng) 無較大鍛造設(shè)備時(shí)可采用兩端均為花鍵聯(lián)接的結(jié)構(gòu),且取相同花鍵參數(shù)以簡(jiǎn)化工藝。在 現(xiàn)代汽車半軸上,漸開線花鍵用得較廣,但也有采用矩形或梯形花鍵的。 半軸多采用含鉻的中碳合金鋼制造,如 40Cr,40CrMnMo,40CrMnSi,40CrMoA,35CrMnSi,35CrMnTi 等。40MnB 是我國(guó)研制出的 新鋼種,作為半軸材料效果很好。半軸的熱處理過去都采用調(diào)質(zhì)處理的方法,調(diào)質(zhì)后要 求桿部硬度為 HB388—444(突緣部分可降至 HB248)。近年來采用高頻、中頻感應(yīng)淬火的 口益增多。這種處理方法使半軸表面淬硬達(dá) HRC52~63,硬化層深約為其半徑的 1/3, 心部硬度可定為 HRC30—35;不淬火區(qū)(突緣等)的硬度可定在 HB248~277 范圍內(nèi)。由于 硬化層本身的強(qiáng)度較高,加之在半軸表面形成大的殘余壓應(yīng)力,以及采用噴丸處理、滾 壓半軸突緣根部過渡圓角等工藝,使半軸的靜強(qiáng)度和疲勞強(qiáng)度大為提高,尤其是疲勞強(qiáng) 28 度提高得十分顯著。由于這些先進(jìn)工藝的采用,不用合金鋼而采用中碳(40 號(hào)、45 號(hào))鋼 的半軸也日益增多。 第五章 驅(qū)動(dòng)橋殼設(shè)計(jì) 驅(qū)動(dòng)橋橋殼是汽車上的主要零件之一,非斷開式驅(qū)動(dòng)橋的橋殼起著支承汽車荷重的 作用,并將載荷傳給車輪.作用在驅(qū)動(dòng)車輪上的牽引力,制動(dòng)力、側(cè)向力和垂向力也是 經(jīng)過橋殼傳到懸掛及車架或車廂上。因此橋殼既是承載件又是傳力件,同時(shí)它又是主減 速器、差速器及驅(qū)動(dòng)車輪傳動(dòng)裝置(如半軸)的外殼。 在汽車行駛過程中,橋殼承受繁重的載荷,設(shè)計(jì)時(shí)必須考慮在動(dòng)載荷下橋殼有足夠 的強(qiáng)度和剛度。為了減小汽車的簧下質(zhì)量以利于降低動(dòng)載荷、提高汽車的行駛平順性, 在保證強(qiáng)度和剛度的前提下應(yīng)力求減小橋殼的質(zhì)量.橋殼還應(yīng)結(jié)構(gòu)簡(jiǎn)單、制造方便以利 于降低成本。其結(jié)構(gòu)還應(yīng)保證主減速器的拆裝、調(diào)整、維修和保養(yǎng)方便。在選擇橋殼的 結(jié)構(gòu)型式時(shí),還應(yīng)考慮汽車的類型、使用要求、制造條件、材料供應(yīng)等。 5.1 橋殼的結(jié)構(gòu)型式 橋殼的結(jié)構(gòu)型式大致分為可分式 a)可分式橋殼 可分式橋殼的整個(gè)橋殼由一個(gè)垂直接合面分為左右兩部分,每一部分均由一個(gè)鑄件 殼體和一個(gè)壓入其外端的半軸套管組成。半軸套管與殼體用鉚釘聯(lián)接。在裝配主減速器 及差速器后左右兩半橋殼是通過在中央接合面處的一圈螺栓聯(lián)成一個(gè)整體。其特點(diǎn)是橋 殼制造工藝簡(jiǎn)單、主減速器軸承支承剛度好。但對(duì)主減速器的裝配、調(diào)整及維修都很不 方便,橋殼的強(qiáng)度和剛度也比較低。過去這種所謂兩段可分式橋殼見于輕型汽車,由于 上述缺點(diǎn)現(xiàn)已很少采用。 b)整體式橋殼 整體式橋殼的特點(diǎn)是將整個(gè)橋殼制成一個(gè)整體,橋殼猶如一整體的空心梁,其強(qiáng)度 及剛度都比較好。且橋殼與主減速器殼分作兩體,主減速器齒輪及差速器均裝在獨(dú)立的 主減速殼里,構(gòu)成單獨(dú)的總成,調(diào)整好以后再由橋殼中部前面裝入橋殼內(nèi),并與橋殼用 29 螺栓固定在一起。使主減速器和差速器的拆裝、調(diào)整、維修、保養(yǎng)等都十分方便。 整體式橋殼按其制造工藝的不同又可分為鑄造整體式、鋼板沖壓焊接式和鋼管擴(kuò)張 成形式三種。 5.2 橋殼的受力分析及強(qiáng)度計(jì)算 我國(guó)通常推薦:計(jì)算時(shí)將橋殼復(fù)雜的受力狀況簡(jiǎn)化成三種典型的計(jì)算工況(與前述 半軸強(qiáng)度計(jì)算的三種載荷工況相同) 。 當(dāng)牽引力或制動(dòng)力最大時(shí),橋殼鋼板彈簧座處危險(xiǎn)端面的彎曲應(yīng)力 和扭轉(zhuǎn)應(yīng)力 為:?? (5-1)vhMσ=W? (5-2)Tτ 式中 ——地面對(duì)車輪垂直反力在橋殼板簧座處危險(xiǎn)端面引起的垂直平面內(nèi)的彎矩,vM ;hx2=Fb? ——橋殼板簧座到車輪面的距離;b ——牽引力或制動(dòng)力 (一側(cè)車輪上的)在水平平面內(nèi)引起的彎矩,h x2 ;hx2M=Fb? ——牽引或制動(dòng)時(shí),上述危險(xiǎn)斷面所受的轉(zhuǎn)矩, ;T Tx2r=F? 、 ——分別為橋殼危險(xiǎn)斷面垂直平面和水平面彎曲的抗彎截面系數(shù);vWh ——危險(xiǎn)斷面的抗扭截面系數(shù)。T 將數(shù)據(jù)帶入式(5-2) 、 (5-3)得: =400 N/mm2 σ =250 N/mm2 τ 橋殼許用彎曲應(yīng)力為 300-500N/mm2,許用扭轉(zhuǎn)應(yīng)力為 150-400N/mm2。可鍛造橋殼取 30 較小值,鋼板沖壓焊接橋殼取最大值。 第六章 結(jié)論 本課題是汽車驅(qū)動(dòng)橋設(shè)計(jì),由于結(jié)構(gòu)簡(jiǎn)單、主減速器造價(jià)低廉、工作可靠,可以被 廣泛用在各種轎車。 設(shè)計(jì)介紹了后橋驅(qū)動(dòng)的結(jié)構(gòu)形式和工作原理,計(jì)算了差速器、主減速器以及半軸的 結(jié)構(gòu)尺寸,進(jìn)行了強(qiáng)度校核,并繪制了有關(guān)零件圖和裝配圖。 本驅(qū)動(dòng)橋設(shè)計(jì)結(jié)構(gòu)合理,符合實(shí)際應(yīng)用,具有很好的動(dòng)力性和經(jīng)濟(jì)性,驅(qū)動(dòng)橋總成 及零部件的設(shè)計(jì)能盡量滿足零件的標(biāo)準(zhǔn)化、部件的通用化和產(chǎn)品的系列化及汽車變型的 要求,修理、保養(yǎng)方便,機(jī)件工藝性好,制造容易。 但此設(shè)計(jì)過程仍有許多不足,在設(shè)計(jì)結(jié)構(gòu)尺寸時(shí),有些設(shè)計(jì)參數(shù)是按照以往經(jīng)驗(yàn)值 得出,這樣就帶來了一定的誤差。另外,在一些小的方面,由于時(shí)間問題,做得還不夠 仔細(xì),懇請(qǐng)各位老師給予批評(píng)指正。 31 致 謝 近三個(gè)月時(shí)間的畢業(yè)課題設(shè)計(jì)是我大學(xué)生活中忙碌而又充實(shí)一段時(shí)光。這里有治學(xué) 嚴(yán)謹(jǐn)而又親切的老師,有互相幫助的同學(xué),更有積極、向上、融洽的學(xué)習(xí)生活氛圍。短 短的時(shí)間里,我學(xué)到了很多的東西。 首先,非常感謝我的畢業(yè)設(shè)計(jì)知道老師左老師。本次設(shè)計(jì)的課題是:汽車驅(qū)動(dòng)橋設(shè) 計(jì)。作為一個(gè)本科生的畢業(yè)設(shè)計(jì),由于經(jīng)驗(yàn)的匱乏,難免有許多考慮不周全的地方,如 果沒有導(dǎo)師的督促指導(dǎo),想要完成這個(gè)設(shè)計(jì)是難以想象的。通過指導(dǎo)老師左老師的講解, 終于把設(shè)計(jì)的思路搞清楚了。對(duì)于具體的細(xì)節(jié)問題,涉及到一些經(jīng)驗(yàn)方面的問題,指導(dǎo) 老師總是不厭其煩的講解。給了我很大的幫助。在這里我非常敬佩左老師的專業(yè)水平、 治學(xué)嚴(yán)謹(jǐn)和科學(xué)研究的精神,這將是我終身學(xué)習(xí)的榜樣,.并將積極影響我今后的學(xué)習(xí)和 工作。 其次,非常感謝我的同學(xué)。當(dāng)我在畢業(yè)設(shè)計(jì)過程中遇到問題和困難時(shí),是他們給我 提出許多細(xì)節(jié)的意見和建議,使我的畢業(yè)設(shè)計(jì)更加完善,并耐心的幫我解決了許多實(shí)際 問題,使我獲益良多。 最后,向我的父親、母親致謝,感謝他