2018版高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1.4 計(jì)數(shù)應(yīng)用題課件 蘇教版選修2-3.ppt
《2018版高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1.4 計(jì)數(shù)應(yīng)用題課件 蘇教版選修2-3.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018版高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1.4 計(jì)數(shù)應(yīng)用題課件 蘇教版選修2-3.ppt(41頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1.4計(jì)數(shù)應(yīng)用題,第1章計(jì)數(shù)原理,,學(xué)習(xí)目標(biāo)1.進(jìn)一步理解和掌握兩個(gè)計(jì)數(shù)原理.2.進(jìn)一步深化理解排列與組合的概念.3.能綜合運(yùn)用排列、組合解決計(jì)數(shù)問題.,,題型探究,內(nèi)容索引,,當(dāng)堂訓(xùn)練,,題型探究,命題角度1“類中有步”的計(jì)數(shù)問題例1電視臺(tái)在某節(jié)目中拿出兩個(gè)信箱,其中存放著先后兩次競(jìng)猜中成績優(yōu)秀的觀眾來信,甲信箱中有30封,乙信箱中有20封,現(xiàn)由主持人抽獎(jiǎng)確定幸運(yùn)觀眾,若先確定一名幸運(yùn)之星,再從兩信箱中各確定一名幸運(yùn)伙伴,有________種不同的結(jié)果.,,類型一兩個(gè)計(jì)數(shù)原理的應(yīng)用,答案,解析,28800,解析在甲箱或乙箱中抽取幸運(yùn)之星,決定了后邊選幸運(yùn)伙伴是不同的,故要分兩類分別計(jì)算:(1)幸運(yùn)之星在甲箱中抽,先確定幸運(yùn)之星,再在兩箱中各確定一名幸運(yùn)伙伴,有302920=17400(種)結(jié)果;(2)幸運(yùn)之星在乙箱中抽,同理有201930=11400(種)結(jié)果.因此共有17400+11400=28800(種)不同結(jié)果.,用流程圖描述計(jì)數(shù)問題,類中有步的情形如圖所示:,反思與感悟,具體意義如下:從A到B算作一件事的完成,完成這件事有兩類辦法,在第1類辦法中有3步,在第2類辦法中有2步,每步的方法數(shù)如圖所示.所以,完成這件事的方法數(shù)為m1m2m3+m4m5,“類”與“步”可進(jìn)一步地理解為:“類”用“+”號(hào)連接,“步”用“”號(hào)連接,“類”獨(dú)立,“步”連續(xù),“類”標(biāo)志一件事的完成,“步”缺一不可.,解析如圖所示,將原圖從上而下的4個(gè)區(qū)域標(biāo)為1,2,3,4.因?yàn)?,2,3之間不能同色,1與4可以同色,因此,要分類討論1,4同色與不同色這兩種情況.故不同的著色方法種數(shù)為432+4321=48.,跟蹤訓(xùn)練1現(xiàn)有4種不同顏色,要對(duì)如圖所示的四個(gè)部分進(jìn)行著色,要求有公共邊界的兩部分不能用同一種顏色,則不同的著色方法共有____種.,答案,解析,48,命題角度2“步中有類”的計(jì)數(shù)問題例2有4位同學(xué)在同一天的上、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”、“臺(tái)階”五個(gè)項(xiàng)目的測(cè)試,每位同學(xué)上、下午各測(cè)試一個(gè)項(xiàng)目,且不重復(fù).若上午不測(cè)“握力”項(xiàng)目,下午不測(cè)“臺(tái)階”項(xiàng)目,其余項(xiàng)目上、下午都各測(cè)一人,則不同的安排方式共有____種.(用數(shù)字作答),答案,解析,264,解析上午總測(cè)試方法有4321=24(種).我們以A、B、C、D、E依次代表五個(gè)測(cè)試項(xiàng)目.若上午測(cè)試E的同學(xué)下午測(cè)試D,則上午測(cè)試A的同學(xué)下午只能測(cè)試B、C,確定上午測(cè)試A的同學(xué)后其余兩位同學(xué)上、下午的測(cè)試方法共有2種;若上午測(cè)試E的同學(xué)下午測(cè)試A、B、C之一,則上午測(cè)試A、B、C中任何一個(gè)的同學(xué)下午都可以測(cè)試D,安排完這位同學(xué)后其余兩位同學(xué)的測(cè)試方式就確定了,故共有33=9(種)測(cè)試方法,即下午的測(cè)試方法共有11種,根據(jù)分步計(jì)數(shù)原理,總的測(cè)試方法共有2411=264(種).,用流程圖描述計(jì)數(shù)問題,步中有類的情形如圖所示:,反思與感悟,從計(jì)數(shù)的角度看,由A到D算作完成一件事,可簡(jiǎn)單地記為A→D.完成A→D這件事,需要經(jīng)歷三步,即A→B,B→C,C→D.其中B→C這步又分為三類,這就是步中有類.其中mi(i=1,2,3,4,5)表示相應(yīng)步的方法數(shù).完成A→D這件事的方法數(shù)為m1(m2+m3+m4)m5.以上給出了處理步中有類問題的一般方法.,跟蹤訓(xùn)練2如圖所示,使電路接通,開關(guān)不同的開閉方式共有____種.,答案,解析,21,解析根據(jù)題意,設(shè)5個(gè)開關(guān)依次為1、2、3、4、5,如圖所示,若電路接通,則開關(guān)1、2與3、4、5中至少有1個(gè)接通,對(duì)于開關(guān)1、2,共有22=4(種)情況,其中全部斷開的有1(種)情況,則其至少有1個(gè)接通的有4-1=3(種)情況,對(duì)于開關(guān)3、4、5,共有222=8(種)情況,其中全部斷開的有1(種)情況,則其至少有1個(gè)接通的有8-1=7(種)情況,則電路接通的情況有37=21(種).,例33個(gè)女生和5個(gè)男生排成一排.(1)如果女生必須全排在一起,有多少種不同的排法?,解(捆綁法)因?yàn)?個(gè)女生必須排在一起,所以可先把她們看成一個(gè)整體,這樣同5個(gè)男生合在一起共有6個(gè)元素,排成一排有種不同排法.對(duì)于其中的每一種排法,3個(gè)女生之間又有種不同的排法,因此共有=4320(種)不同的排法.,,類型二有限制條件的排列問題,解答,(2)如果女生必須全分開,有多少種不同的排法?,解(插空法)要保證女生全分開,可先把5個(gè)男生排好,每兩個(gè)相鄰的男生之間留出一個(gè)空,這樣共有4個(gè)空,加上兩邊兩個(gè)男生外側(cè)的兩個(gè)位置,共有6個(gè)位置,再把3個(gè)女生插入這6個(gè)位置中,只要保證每個(gè)位置至多插入一個(gè)女生,就能保證任意兩個(gè)女生都不相鄰.由于5個(gè)男生排成一排有種不同的排法,對(duì)于其中任意一種排法,從上述6個(gè)位置中選出3個(gè)來讓3個(gè)女生插入有種方法,因此共有=14400(種)不同的排法.,解答,(3)如果兩端都不能排女生,有多少種不同的排法?,解答,解方法一(特殊位置優(yōu)先法)因?yàn)閮啥瞬荒芘排詢啥酥荒芴暨x5個(gè)男生中的2個(gè),有種不同排法,對(duì)于其中的任意一種排法,其余六位都有種排法,所以共有=14400(種)不同的排法.,方法二(間接法)3個(gè)女生和5個(gè)男生排成一排共有種不同的排法,從中扣除女生排在首位的種排法和女生排在末位的種排法,但這樣兩端都是女生的排法在扣除女生排在首位時(shí)被扣去一次,在扣除女生排在末位時(shí)又被扣去一次,所以還需加一次,由于兩端都是女生有種不同的排法,所以共有14400(種)不同的排法.,方法三(特殊元素優(yōu)先法)從中間6個(gè)位置中挑選出3個(gè)讓3個(gè)女生排入,有種不同的排法,對(duì)于其中的任意一種排法,其余5個(gè)位置又都有種不同的排法,所以共有=14400(種)不同的排法.,(4)如果兩端不能都排女生,有多少種不同的排法?,解方法一因?yàn)橹灰髢啥瞬荒芏寂排匀绻孜慌帕四猩?,則末位就不再受條件限制了,這樣可有種不同的排法;如果首位排女生,有種排法,這時(shí)末位就只能排男生,這樣可有種不同的排法.因此共有=36000(種)不同的排法.方法二3個(gè)女生和5個(gè)男生排成一排有種排法,從中扣去兩端都是女生的排法有種,就能得到兩端不都是女生的排法種數(shù).因此共有=36000(種)不同的排法.,解答,(5)如果甲必須排在乙的右面(可以不相鄰),有多少種不同的排法?,解(順序固定問題)因?yàn)?人排隊(duì),其中兩人順序固定,,解答,(1)排列問題的限制條件一般表現(xiàn)為:某些元素不能在某個(gè)位置,某個(gè)位置只能放某些元素等.要先處理特殊元素或先處理特殊位置,再去排其他元素.當(dāng)用直接法比較麻煩時(shí),可以用間接法,先不考慮限制條件,把所有的排列數(shù)算出,再從中減去全部不符合條件的排列數(shù),這種方法也稱為“去雜法”,但必須注意要不重復(fù),不遺漏(去盡).(2)對(duì)于某些特殊問題,可采取相對(duì)固定的特殊方法,如相鄰問題,可用“捆綁法”,即將相鄰元素看成一個(gè)整體與其他元素排列,再進(jìn)行內(nèi)部排列;不相鄰問題,則用“插空法”,即先排其他元素,再將不相鄰元素排入形成的空位中.,反思與感悟,跟蹤訓(xùn)練3用0到9這10個(gè)數(shù)字,(1)可以組成多少個(gè)沒有重復(fù)數(shù)字的四位數(shù)?在這些四位數(shù)中,奇數(shù)有多少個(gè)?,解答,解0到9這10個(gè)數(shù)字構(gòu)成的三位數(shù)共有900個(gè),分為三類:第1類:三位數(shù)字全相同,如111,222,…,999,共9個(gè);第2類:三位數(shù)字全不同,共有998=648(個(gè)),第3類:由間接法可求出,只含有2個(gè)相同數(shù)字的三位數(shù),共有900-9-648=243(個(gè)).,(2)可以組成多少個(gè)只含有2個(gè)相同數(shù)字的三位數(shù)?,解答,命題角度1不同元素的排列、組合問題例4有4張分別標(biāo)有數(shù)字1,2,3,4的紅色卡片和4張分別標(biāo)有數(shù)字1,2,3,4的藍(lán)色卡片,從這8張卡片中取出4張卡片排成一行.如果取出的4張卡片所標(biāo)的數(shù)字之和等于10,則不同的排法共有多少種?,,類型三排列與組合的綜合應(yīng)用,解答,解分三類:,(1)解排列、組合綜合問題的一般思路是“先選后排”,也就是先把符合題意的元素都選出來,再對(duì)元素或位置進(jìn)行排列.(2)解排列、組合綜合問題時(shí)要注意以下幾點(diǎn):①元素是否有序是區(qū)分排列與組合的基本方法,無序的問題是組合問題,有序的問題是排列問題.②對(duì)于有多個(gè)限制條件的復(fù)雜問題,應(yīng)認(rèn)真分析每個(gè)限制條件,然后再考慮是分類還是分步,這是處理排列、組合綜合問題的一般方法.,反思與感悟,跟蹤訓(xùn)練4從1,3,5,7,9中任取3個(gè)數(shù)字,從0,2,4,6,8中任取2個(gè)數(shù)字,一共可以組成多少個(gè)沒有重復(fù)數(shù)字的五位偶數(shù)?,解答,解(1)五位數(shù)中不含數(shù)字0.,(2)五位數(shù)中含有數(shù)字0.,第2步,排順序又可分為兩小類:,所以符合條件的偶數(shù)個(gè)數(shù)為,命題角度2含有相同元素的排列、組合問題例5將10個(gè)優(yōu)秀名額分配到一班、二班、三班3個(gè)班級(jí)中,若各班名額數(shù)不小于班級(jí)序號(hào)數(shù),則共有_____種不同的分配方案.,解析先拿3個(gè)優(yōu)秀名額分配給二班1個(gè),三班2個(gè),這樣原問題就轉(zhuǎn)化為將7個(gè)優(yōu)秀名額分配到3個(gè)班級(jí)中,每個(gè)班級(jí)中至少分配到1個(gè).利用“隔板法”可知,共有=15(種)不同的分配方案.,答案,解析,15,凡“相同小球放入不同盒中”的問題,即為“n個(gè)相同元素有序分成m組(每組的任務(wù)不同)”的問題,一般可用“隔板法”求解:(1)當(dāng)每組至少含一個(gè)元素時(shí),其不同分組方式有N=種,即將n個(gè)元素中間的n-1個(gè)空格中加入m-1個(gè)“隔板”.(2)任意分組,可出現(xiàn)某些組含元素為0個(gè)的情況,其不同分組方式有N=種,即將n個(gè)相同元素與m-1個(gè)相同“隔板”進(jìn)行排序,在n+m-1個(gè)位置中選m-1個(gè)安排“隔板”.,反思與感悟,跟蹤訓(xùn)練5用2,3,4,5,6,7六個(gè)數(shù)字,可以組成有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)為____.,解析用間接法:六個(gè)數(shù)字能構(gòu)成的三位數(shù)共666=216(個(gè)),而無重復(fù)數(shù)字的三位數(shù)共有=654=120(個(gè)).故所求的三位數(shù)的個(gè)數(shù)為216-120=96.,答案,解析,96,,當(dāng)堂訓(xùn)練,1.李芳有4件不同顏色的襯衣,3件不同花樣的裙子,另有兩套不同樣式的連衣裙.“五一”節(jié)需選擇一套服裝參加歌舞演出,則李芳有____種不同的選擇方式.,答案,2,3,4,5,1,解析,解析由題意可得,李芳不同的選擇方式為43+2=14.,14,2.包括甲、乙在內(nèi)的7個(gè)人站成一排,其中甲在乙的左側(cè)(可以不相鄰),有_____種站法.,答案,2,3,4,5,1,解析,解析因?yàn)榧?、乙定序了,所以有?520(種).,2520,3.從0,2,4中取一個(gè)數(shù)字,從1,3,5中取兩個(gè)數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),則所有不同的三位數(shù)的個(gè)數(shù)是_____.,答案,2,3,4,5,1,解析,48,解析第一類:從2,4中任取一個(gè)數(shù),有種取法,同時(shí)從1,3,5中取兩個(gè)數(shù)字,有種取法,再把三個(gè)數(shù)全排列,有種排法.故有=36(種)取法.第二類:從0,2,4中取出0,有種取法,從1,3,5三個(gè)數(shù)字中取出兩個(gè)數(shù)字,有種取法,然后把兩個(gè)非0的數(shù)字中的一個(gè)先安排在首位,有種排法,剩下的兩個(gè)數(shù)字全排列,有種排法,共有=12(種)方法.共有36+12=48(種)排法.,2,3,4,5,1,4.某電視臺(tái)連續(xù)播放5個(gè)廣告,其中有3個(gè)不同的商業(yè)廣告和2個(gè)不同的公益宣傳廣告,要求最后播放的必須是公益宣傳廣告,且2個(gè)公益宣傳廣告不能連續(xù)播放,則不同的播放方式有_____種.,答案,2,3,4,5,1,解析,解析先安排后2個(gè),再安排前3個(gè),由分步計(jì)數(shù)原理知,共有=36(種)不同的播放方式.,36,2,3,4,5,1,5.已知xi∈{-1,0,1},i=1,2,3,4,5,6,則滿足x1+x2+x3+x4+x5+x6=2的數(shù)組(x1,x2,x3,x4,x5,x6)的個(gè)數(shù)為____.,答案,解析,解析根據(jù)題意,∵x1+x2+x3+x4+x5+x6=2,xi∈{-1,0,1},i=1,2,3,4,5,6,∴xi中有2個(gè)1和4個(gè)0,或3個(gè)1、1個(gè)-1和2個(gè)0,或4個(gè)1和2個(gè)-1,共有=90(個(gè)),∴滿足x1+x2+x3+x4+x5+x6=2的數(shù)組(x1,x2,x3,x4,x5,x6)的個(gè)數(shù)為90.,90,規(guī)律與方法,1.解排列、組合綜合題一般是先選元素、后排元素,或充分利用元素的性質(zhì)進(jìn)行分類、分步,再利用兩個(gè)基本計(jì)數(shù)原理作最后處理.2.對(duì)于較難直接解決的問題則可用間接法,但應(yīng)做到不重不漏.3.對(duì)于分配問題,解題的關(guān)鍵是要搞清楚事件是否與順序有關(guān),對(duì)于平均分組問題更要注意順序,避免計(jì)數(shù)的重復(fù)或遺漏.,本課結(jié)束,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018版高中數(shù)學(xué) 第一章 計(jì)數(shù)原理 1.4 計(jì)數(shù)應(yīng)用題課件 蘇教版選修2-3 2018 高中數(shù)學(xué) 計(jì)數(shù) 原理 應(yīng)用題 課件 蘇教版 選修
鏈接地址:http://ioszen.com/p-12717474.html