《數(shù)列求和 (2)》由會員分享,可在線閱讀,更多相關(guān)《數(shù)列求和 (2)(9頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、數(shù)列求和
知識要點:
數(shù)列求和的常用方法
1.公式法;
2.倒序相加法;
3.錯位相減法;
4.分組轉(zhuǎn)化法;
5.裂項相消法.
1.公式法;
2.倒序相加法.
3.錯位相減法.
4.分組轉(zhuǎn)化法.
5.裂項相消法.
習題講解
練習
求下列各項的和
(1)Sn=1+(3+4)+(5+6+7)+…+(2n – 1+2n+…+3n –2)
(2)Sn=12–22+32– 42+…+(– 1)n–1·n2
【解析】(1)∵an=(
2、2n–1)+2n+(2n+1)+…+[(2n – 1)+ n – 1] =,
∴Sn=…+n2)–(1+2+…+n)
=.
(2)當n是偶數(shù)時,
[(n–1)2–n2]
= –3–7…–(2n+1) =.
當n是奇數(shù)時,
Sn=1+(32–22)+(52– 42)+…+ [n2– (n–1)]
=1 + 5 + 9 +…+(2n–1)=.
故Sn=.
小結(jié)
練習
1 . 已知數(shù)列{an}滿足a1 = 1,
(n∈N *,n>1).
(1)求證:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{ anan + 2}的前n項和Sn;
(3)設(shè)
3、(a∈R),求數(shù)列{bn}的前n項和Tn.
【解析】(1)當n≥2時,由得:an – 1 – an – 2 an – 1 an = 0,
兩邊同除an an – 1,得
∴{}是以為首項,d = 2為公差的等差數(shù)列.
(2)由(1)知,= 1 + ( n – 1 )×2 = 2n – 1,∴an =
∴an an +2 =,
…+
(3)∵bn =
∴
,
當a = 0時,Tn = 0;
當a = 1時,Tn = n2;
當a≠0且a≠1時,由于Tn = a + 3a2 + 5a3 +…+(2n – 1)an
4、 ①
∴aTn = a2 + 3a3 + 5a4+…+(2n – 1)an + 1 ②
① – ②得:(1 – a)Tn = a + 2(a2 + a3 +…+an) – (2n – 1)an + 1,
∴,
故
2. 如果有窮數(shù)列a1,a2,…,am(m為正整數(shù))滿足條件a1 = am,a2 = am – 1 …,am = a1,即
ai = am – i + 1 (i = 1,2,…,m ),我們稱其為“對稱數(shù)列”.
例如,數(shù)列1,2,5,2,1與數(shù)列8,4,2,2,4,8都是“對稱數(shù)列”.
(1)設(shè){bn}是7項的“對稱數(shù)列”,其中b1,b2,b3,b4是等差數(shù)列,且
5、b1 = 2,b4 = 11,依次寫出{bn}的每一項;
(2)設(shè){cn}是49項的“對稱數(shù)列”,其中c25,c26,…,c49是首項為1,公比為2的等比數(shù)列,求{cn}的各項的和S;
(3)設(shè){dn}是100項的“對稱數(shù)列”,其中d51,d52,…,d100是首項為2,公差為3的等差數(shù)列,求{dn}前n項的和Sn(n = 1,2,…100).
【解析】(1)設(shè)數(shù)列{bn}前四項的差為d,
則b4 = b1 + 3d = 2 + 3d = 11,解得d = 3,
∴數(shù)列{bn}為2,5,8,11,8,5,2.
(2)S = c1 + c2+…+c49 = 2(c25 + c26 +
6、…+ c49) – c25 = 2 (1 + 2 + 22 + …224) – 1 = 2 (225 – 1) – 1 = 226 – 3 = 67108861.
(3)d51 = 2,d100 = 2 + 3×(50 – 1) = 149.
由題意得d1,d2,…,d50是首項為149,公差為 – 3的等差數(shù)列,
當n≤50時,Sn = d1 + d2 + … + dn.
= 149n +
當51≤n≤100時,Sn = d1 + d2 + … + dn
= S50 + (d51 + d52 + … + dn)
= 3775 + 2×(n – 50) +
=
綜上所述,Sn =
9