《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 不等式選講 文》由會員分享,可在線閱讀,更多相關(guān)《江西省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 不等式選講 文(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、
選修4—5 不等式選講
真題試做
1.(2012·天津高考,文9)集合A=中的最小整數(shù)為__________.
2.(2012·上海高考,文2)若集合A={x|2x-1>0},B={x||x|<1},則A∩B=__________.
3.(2012·江西高考,理15)在實(shí)數(shù)范圍內(nèi),不等式|2x-1|+|2x+1|≤6的解集為__________.
4.(2012·湖南高考,理10)不等式|2x+1|-2|x-1|>0的解集為__________________.
考向分析
該部分主要有兩個(gè)考點(diǎn),一是帶有絕對值的不等式的求解;二是與絕對值不等式有關(guān)的參數(shù)范圍問題.對于帶有絕
2、對值不等式的求解,主要考查形如|ax+b|≤c,|ax+b|≥c或|x-c|±|x-b|≥a的不等式的解法,考查絕對值的幾何意義及零點(diǎn)分區(qū)間去絕對值符號后轉(zhuǎn)化為不等式組的方法.試題多以填空題的形式出現(xiàn).對于與絕對值不等式有關(guān)的參數(shù)范圍問題,此類問題常與絕對值不等式的解法、函數(shù)的值域等問題結(jié)合,試題多以填空題為主.
預(yù)測在今后高考中,對該部分的考查如果是帶有絕對值的不等式往往在解不等式的同時(shí)考查參數(shù)取值范圍、函數(shù)與方程思想等,試題難度中等.
熱點(diǎn)例析
熱點(diǎn)一 絕對值不等式的解法
【例1】不等式|x+3|-|x-2|≥3的解集為________.
規(guī)律方法 1.絕對值不等式的解法
3、(1)|x|<a?-a<x<a;|x|>a?x>a或x<-a;
(2)|ax+b|≤c?-c≤ax+b≤c;
|ax+b|≥c?ax+b≤-c或ax+b≥c;
(3)|x-a|+|x-b|≥c和|x-a|+|x-b|≤c的解法有三種:一是根據(jù)絕對值的意義結(jié)合數(shù)軸直觀求解;二是用零點(diǎn)分區(qū)間去絕對值,轉(zhuǎn)化為三個(gè)不等式組求解;三是構(gòu)造函數(shù)利用函數(shù)圖象求解.
2.絕對值三角不等式
(1)|a|-|b|≤||a|-|b||≤|a±b|≤|a|+|b|;
(2)|a-c|≤|a-b|+|b-c|.
變式訓(xùn)練1 不等式|2x-1|<3的解集為__________.
熱點(diǎn)二 與絕對值不等式有關(guān)
4、的參數(shù)范圍問題
【例2】不等式|2x+1|+|x+a|+|3x-3|<5的解集非空,則a的取值范圍為__________.
規(guī)律方法 解決含參數(shù)的絕對值不等式問題,往往有以下兩種方法:
(1)對參數(shù)分類討論,將其轉(zhuǎn)化為分類函數(shù)來處理;
(2)借助于絕對值的幾何意義,先求出f(x)的最值或值域,然后再根據(jù)題目要求,進(jìn)一步求解參數(shù)的范圍.
變式訓(xùn)練2 設(shè)函數(shù)f(x)=|x-1|+|x-a|.
(1)若a=-1,則不等式f(x)≥3的解集為__________;
(2)如果關(guān)于x的不等式f(x)≤2有解,則a的取值范圍為__________.
1.不等式|2x-1|<3的解集為_
5、_________.
2.若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍為__________.
3.設(shè)函數(shù)f(x)=|x+1|+|x-a|(a>0).若不等式f(x)≥5的解集為(-∞,-2]∪[3,+∞),則a的值為________.
4.若不等式>|a-2|+1對于一切非零實(shí)數(shù)x均成立,則實(shí)數(shù)a的取值范圍是__________.
5.設(shè)函數(shù)f(x)=|2x+1|-|x-4|.若關(guān)于x的不等式a>f(x)有解,則實(shí)數(shù)a的取值范圍是__________.
6.若存在實(shí)數(shù)x滿足不等式|x-4|+|x-3|<a,則實(shí)數(shù)a的取值范圍是__________.
7.不等式|
6、2x+1|+|3x-2|≥5的解集是__________.
8.已知集合A={x||x+3|+|x-4|≤9},B=,則集合A∩B=________.
參考答案
命題調(diào)研·明晰考向
真題試做
1.-3 解析:∵|x-2|≤5,∴-5≤x-2≤5,
∴-3≤x≤7,∴集合A中的最小整數(shù)為-3.
2. 解析:由A=,B={x|-1<x<1},則A∩B=.
3.
4. 解析:對于不等式|2x+1|-2|x-1|>0,分三種情況討論:
1° 當(dāng)x<-時(shí),-2x-1-2(-x+1)>0,
即-3>0,故x不存在;
2° 當(dāng)-≤x≤1時(shí),2x+1-2(-x+1)>0,
即<x≤1
7、;
3° 當(dāng)x>1時(shí),2x+1-2(x-1)>0,3>0,
故x>1.
綜上可知,x>,不等式的解集是.
精要例析·聚焦熱點(diǎn)
熱點(diǎn)例析
【例1】{x|x≥1} 解析:原不等式可化為:
或或
∴x∈或1≤x<2或x≥2.∴不等式的解集為{x|x≥1}.
【變式訓(xùn)練1】{x|-1<x<2} 解析:由|2x-1|<3得-3<2x-1<3,∴-1<x<2.
【例2】-3<a<1 解析:不等式|2x+1|+|x+a|+|3x-3|<5的解集非空.即|2x+1|+|3x-3|<5-|x+a|有解,令f(x)=|2x+1|+|3x-3|,g(x)=5-|x+a|,畫出函數(shù)f(x)的圖象知
8、當(dāng)x=1時(shí)f(x)min=3,∴g(x)=g(1)=5-|1+a|>3即可,解得-3<a<1.
【變式訓(xùn)練2】(1)∪
(2)[-1,3]
創(chuàng)新模擬·預(yù)測演練
1.{x|-1<x<2} 解析:|2x-1|<3?-3<2x-1<3?-1<x<2.
2.(-2,8) 解析:存在實(shí)數(shù)x滿足|x-3|+|x-m|<5?(|x-3|+|x-m|)min<5,即|m-3|<5,解得-2<m<8.
3.2 解析:由題意,知f(-2)=f(3)=5,即1+|2+a|=4+|3-a|=5,解得a=2.
4.(1,3) 解析:∵≥2,
∴|a-2|+1<2,即|a-2|<1,解得1<a<3.
5
9、.a(chǎn)>- 解析:由題意知a>f(x)min,
又f(x)=
所以f(x)min=f=-.
所以a>-.
6.(1,+∞)
7.∪ 解析:當(dāng)x≤-時(shí),不等式為-(2x+1)-(3x-2)≥5,解得x≤-;
當(dāng)-<x≤時(shí),不等式為(2x+1)-(3x-2)≥5,解得x≤-2,此時(shí)無解;
當(dāng)x>時(shí),不等式為(2x+1)+(3x-2)≥5,解得x≥.
故原不等式的解集為∪.
8.{x|-2≤x≤5} 解析:∵A={x||x+3|+|x-4|≤9}
={x|-4≤x≤5},
B=
=
={x|x≥-2},
∴A∩B={x|-4≤x≤5}∩{x|x≥-2}={x|-2≤x≤5}.
- 3 -