2013年中考數(shù)學(xué)知識(shí)點(diǎn) 軸對(duì)稱復(fù)習(xí) 軸對(duì)稱知識(shí)點(diǎn)分類匯總大全(無(wú)答案)

上傳人:go****ng 文檔編號(hào):147030322 上傳時(shí)間:2022-09-01 格式:DOC 頁(yè)數(shù):17 大小:477.50KB
收藏 版權(quán)申訴 舉報(bào) 下載
2013年中考數(shù)學(xué)知識(shí)點(diǎn) 軸對(duì)稱復(fù)習(xí) 軸對(duì)稱知識(shí)點(diǎn)分類匯總大全(無(wú)答案)_第1頁(yè)
第1頁(yè) / 共17頁(yè)
2013年中考數(shù)學(xué)知識(shí)點(diǎn) 軸對(duì)稱復(fù)習(xí) 軸對(duì)稱知識(shí)點(diǎn)分類匯總大全(無(wú)答案)_第2頁(yè)
第2頁(yè) / 共17頁(yè)
2013年中考數(shù)學(xué)知識(shí)點(diǎn) 軸對(duì)稱復(fù)習(xí) 軸對(duì)稱知識(shí)點(diǎn)分類匯總大全(無(wú)答案)_第3頁(yè)
第3頁(yè) / 共17頁(yè)

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2013年中考數(shù)學(xué)知識(shí)點(diǎn) 軸對(duì)稱復(fù)習(xí) 軸對(duì)稱知識(shí)點(diǎn)分類匯總大全(無(wú)答案)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2013年中考數(shù)學(xué)知識(shí)點(diǎn) 軸對(duì)稱復(fù)習(xí) 軸對(duì)稱知識(shí)點(diǎn)分類匯總大全(無(wú)答案)(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、軸對(duì)稱與軸對(duì)稱圖形 一、知識(shí)點(diǎn): 1. 什么叫軸對(duì)稱: 如果把一個(gè)圖形沿著某一條直線折疊后,能夠與另一個(gè)圖形重合,那么這兩個(gè)圖形關(guān)于這條直線成軸對(duì)稱,這條直線叫做對(duì)稱軸,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn)。 2. 什么叫軸對(duì)稱圖形: 如果把一個(gè)圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形,這條直線叫做對(duì)稱軸。 3.軸對(duì)稱與軸對(duì)稱圖形的區(qū)別與聯(lián)系: 區(qū)別: ①軸對(duì)稱是指兩個(gè)圖形沿某直線對(duì)折能夠完全重合,而軸對(duì)稱圖形是指一個(gè)圖形的兩個(gè)部分沿某直線對(duì)折能完全重合。 ②軸對(duì)稱是反映兩個(gè)圖形的特殊位置、大小關(guān)系;軸對(duì)稱圖形是反映一個(gè)圖形的特性。 聯(lián)系:

2、 ①兩部分都完全重合,都有對(duì)稱軸,都有對(duì)稱點(diǎn)。 ②如果把成軸對(duì)稱的兩個(gè)圖形看成是一個(gè)整體,這個(gè)整體就是一個(gè)軸對(duì)稱圖形;如果把一個(gè)軸對(duì)稱圖形的兩旁的部分看成兩個(gè)圖形,這兩個(gè)部分圖形就成軸對(duì)稱。 常見(jiàn)的軸對(duì)稱圖形有:圓、正方形、長(zhǎng)方形、菱形、等腰梯形、等腰三角形、等邊三角形、角、線段、相交的兩條直線等。 l A B 4.線段的垂直平分線: 垂直并且平分一條線段的直線,叫做這條線段的垂直平分線。 (也稱線段的中垂線) 5.軸對(duì)稱的性質(zhì): ⑴成軸對(duì)稱的兩個(gè)圖形全等。 ⑵如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線。 6.怎樣畫(huà)軸對(duì)稱圖形: 畫(huà)軸對(duì)稱圖形時(shí)

3、,應(yīng)先確定對(duì)稱軸,再找出對(duì)稱點(diǎn)。 二、舉例: 例1:判斷題: ① 角是軸對(duì)稱圖形,對(duì)稱軸是角的平分線; ( ) ②等腰三角形至少有1條對(duì)稱軸,至多有3條對(duì)稱軸; ( ) ③關(guān)于某直線對(duì)稱的兩個(gè)三角形一定是全等三角形; ( ) ④兩圖形關(guān)于某直線對(duì)稱,對(duì)稱點(diǎn)一定在直線的兩旁。 ( ) 例2:下圖曾被哈佛大學(xué)選為入學(xué)考試的試題.請(qǐng)?jiān)谙铝幸唤M圖形符

4、號(hào)中找出它們所蘊(yùn)含的內(nèi)在規(guī)律,然后把圖形空白處填上恰當(dāng)?shù)膱D形. 例3:如圖,由小正方形組成的L形圖中,請(qǐng)你用三種方法分別在下圖中添畫(huà)一個(gè)小正方形使它成為一個(gè)軸對(duì)稱圖形: 方法1 方法2 方法3 例4:如圖,已知:ΔABC和直線l,請(qǐng)作出ΔABC關(guān)于直線l的對(duì)稱三角形。 l B A C l B A C l B A C C A D B 例5:如圖,DA、CB是平面鏡前同一發(fā)光點(diǎn)S發(fā)出的經(jīng)平面鏡反射后的反射光線,請(qǐng)通過(guò)畫(huà)圖確定發(fā)光點(diǎn)S的位置

5、,并將光路圖補(bǔ)充完整。 例6:如圖,四邊形ABCD是長(zhǎng)方形彈子球臺(tái)面,有黑白兩球分別位于E、F兩點(diǎn)位置上,試問(wèn)怎樣撞擊黑球E,才能使黑球先碰撞臺(tái)邊AB反彈后再擊中白球F? 例7:如圖,要在河邊修建一個(gè)水泵站,向張莊A、李莊B送水。修在河邊什么地方,可使使用的水管最短? · · A B a 例8:如圖,OA、OB是兩條相交的公路,點(diǎn)P是一個(gè)郵電所,現(xiàn)想在OA、OB上各設(shè)立一個(gè)投遞點(diǎn),要想使郵電員每次投遞路程最近,問(wèn)投遞點(diǎn)應(yīng)設(shè)立在何處? · P B O A 線段、

6、角的軸對(duì)稱性 l A B M 一、知識(shí)點(diǎn): 1.線段的軸對(duì)稱性: ① 線段是軸對(duì)稱圖形,對(duì)稱軸有兩條;一條是線段所在的直線, 另一條是這條線段的垂直平分線。 ②線段的垂直平分線上的點(diǎn)到線段兩端的距離相等。 ③到線段兩端距離相等的點(diǎn),在這條線段的垂直平分線上。 結(jié)論:線段的垂直平分線是到線段兩端距離相等的點(diǎn)的集合 2.角的軸對(duì)稱性: ①角是軸對(duì)稱圖形,對(duì)稱軸是角平分線所在的直線。 ②角平分線上的點(diǎn)到角的兩邊距離相等。 ③到角的兩邊距離相等的點(diǎn),在這個(gè)角的平分線上。 結(jié)論:角的平分線是到角的兩邊距離相等的點(diǎn)的集合 二、舉例: 例1:已知ABC中,AB=AC=

7、10,DE垂直平分AB,交AC于E,已知BEC的周長(zhǎng)是16。求ABC的周長(zhǎng). · C B O A · D 例2:如圖,已知∠AOB及點(diǎn)C、D,求作一點(diǎn)P,使PC=PD,并且使點(diǎn)P到OA、OB的距離相等。 l · · A B 例3:如圖,已知直線及其兩側(cè)兩點(diǎn)A、B。 (1) 在直線上求一點(diǎn)P,使PA=PB; (2)在直線上求一點(diǎn)Q,使平分∠AQB。 例4:如圖,直線a、b、c表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,可供選擇的地址有幾處?如何選? O

8、D C B A E 例5:已知:如圖,在ΔABC中,O是∠B、∠C外角的平分線的交點(diǎn),那么點(diǎn)O在∠A的平分線上嗎?為什么? O D C B A 1 2 3 4 例6:如圖,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。試判斷AD和BC的關(guān)系,并說(shuō)明理由。 例7:已知:如圖,△ABC中,BC邊中垂線ED交BC于E,交BA延長(zhǎng)線于D,過(guò)C作CF⊥BD于F,交DE于G,DF=BC,試說(shuō)明∠FCB=∠B 例8:已知:在∠ABC中,D是∠ABC平分線上一點(diǎn),E、F分別在AB、AC上,且D

9、E=DF。 試判斷∠BED與∠BFD的關(guān)系,并說(shuō)明理由. 2、已知:在ΔABC中,D是BC上一點(diǎn),DE⊥BA于E,DF⊥AC于F,且DE=DF.。試判斷線段AD與EF有何關(guān)系?并說(shuō)明理由。 3、如圖,已知:在△ABC中,∠BAC=90°,BD平分∠ABC,DE⊥BC于E。試說(shuō)明BD垂直平分AE 等腰三角形的軸對(duì)稱性 一、知識(shí)點(diǎn): 3. 等腰三角形的性質(zhì): ①等腰三角形是軸對(duì)稱圖形,頂角平分線所在直線是它的對(duì)稱軸; ②等腰三角形的兩個(gè)底角相等;(簡(jiǎn)稱“等邊對(duì)等角”) ③等腰三角形的頂角平分線、底邊上的中

10、線、底邊上的高互相重合。(簡(jiǎn)稱“三線合一”) 4. 等腰三角形的判定: ①如果一個(gè)三角形有2個(gè)角相等,那么這2個(gè)角所對(duì)的邊也相等;(簡(jiǎn)稱“等角對(duì)等邊”) ②直角三角形斜邊上的中線等于斜邊上的一半。 3.等邊三角形: ① 等邊三角形的定義: 三邊相等的三角形叫做等邊三角形或正三角形。 ② 等邊三角形的性質(zhì): 等邊三角形是軸對(duì)稱圖形,并且有3條對(duì)稱軸; 等邊三角形的每個(gè)角都等于600。 ③等邊三角形的判定: 3個(gè)角相等的三角形是等邊三角形; 有兩個(gè)角等于600的三角形是等邊三角形; 有一個(gè)角等于600的等腰三角形是等邊三角形。 4.三角形的分類:

11、 斜三角形:三邊都不相等的三角形。 三角形 只有兩邊相等的三角形。 等腰三角形 等邊三角形 二、舉例: 例1、如圖,已知D、E兩點(diǎn)在線段BC上,AB=AC,AD=AE,試說(shuō)明BD=CE的理由? A B C E D 例2:如圖,已知:△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且相交于O點(diǎn)。①試說(shuō)明△OBC是等腰三角形;②連接OA,試判斷直

12、線OA與線段BC的關(guān)系?并說(shuō)明理由。 A E D B C O O D C B A 1 2 3 4 例3:如圖,已知:AD和BC相交于O,∠1=∠2,∠3=∠4。試判斷AD和BC的關(guān)系,并說(shuō)明理由。 E D C B A 例4:如圖,已知:△ABC中,∠C=900,D、E是AB邊上的兩點(diǎn),且AD=AC,BD=BC。 求∠DCE的度數(shù)。 G F E D C B A · · 例5:如圖,已知:△ABC中,BD、CE分別是AC、AB邊上的高,G、F分別是BC、DE的中點(diǎn)

13、。試探索FG與DE的關(guān)系。 A F E D B C M 例6:如圖,已知:△ABC中,∠C=900,AC=BC,M是AB的中點(diǎn),DE⊥BC于E,DF⊥AC于F。試判斷△MEF的形狀?并說(shuō)明理由。 E D C B A 例7:如圖,已知:△ABC為等邊三角形,延長(zhǎng)BC到D,延長(zhǎng)BA到E,AE=BD,連結(jié)EC、ED,試說(shuō)明CE=DE。 A F C E B D M P 例8:如圖,在等邊△ABC中,P為△ABC內(nèi)任意一點(diǎn),PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AM⊥BC于M,試

14、猜想AM、PD、PE、PF之間的關(guān)系,并證明你的猜想. 等腰梯形的軸對(duì)稱性 一、知識(shí)點(diǎn): 5. 等腰梯形的定義: ①梯形的定義:一組對(duì)邊平行,另一組對(duì)邊不平行為梯形。 梯形中,平行的一組對(duì)邊稱為底,不平行的一組對(duì)邊稱為腰。 A D C B ②等腰梯形的定義:兩腰相等的梯形叫做等腰梯形。 6. 等腰梯形的性質(zhì): ①等腰梯形是軸對(duì)稱圖形,是兩底中點(diǎn)的連線所在的直線。 ②等腰梯形同一底上兩底角相等。 ③等腰梯形的對(duì)角線相等。 3.等腰梯形的判定: ③ 在同一底上的2個(gè)底角相等的梯形是等腰梯形。 ④ 補(bǔ)充:對(duì)角線相等的梯形是等腰梯形。 二、舉例:

15、 例1:填空: 1、等腰梯形的腰長(zhǎng)為12cm,上底長(zhǎng)為15cm,上底與腰的夾角為120°,則下底長(zhǎng)為 cm. 2、如果一個(gè)等腰梯形的二個(gè)內(nèi)角的和為 1000 ,那么此梯形的四個(gè)內(nèi)角的度數(shù)分別為 . 3、等腰梯形上底的長(zhǎng)與腰長(zhǎng)相等,而一條對(duì)角線與一腰垂直,則梯形上底角的度數(shù)是______; 4、已知等腰梯形的一個(gè)底角等于600,它的兩底分別為13cm和37cm,它的周長(zhǎng)為_(kāi)______; A D C B 5、如圖,在梯形ABCD中,AD∥BC,AB=CD,∠A=120°,對(duì)角線BD平分∠ABC,則 ∠BDC的度數(shù)是 ;又若AD=5,則BC=

16、 . 6、如圖,在等腰梯形ABCD中,AD∥BC,AB = AD,BD = BC, 則∠C= 0。 例2:如圖,等腰梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于點(diǎn)O.試說(shuō)明:AO=DO. 例3:如圖,梯形ABCD中,AD∥BC,AC=BD。試說(shuō)明:梯形ABCD是等腰梯形。 A D B C E 例4:如圖,在等腰梯形ABCD中,AD∥BC,AD=3cm,BC=7cm,E為CD的中點(diǎn),四邊形ABED的周長(zhǎng)比△BCE的周長(zhǎng)大2 cm,試求AB的長(zhǎng). 例5:如圖,在

17、等腰梯形ABCD中,AD∥BC,AB=CD,M為BC中點(diǎn),則: (1)點(diǎn)M到兩腰AB、CD的距離相等嗎?請(qǐng)說(shuō)出你的理由。 (2)若連結(jié)AM、DM,那么△AMD是等腰三角形嗎?為什么? (3)又若N為AD的中點(diǎn),那么MN⊥AD一定成立.你能說(shuō)明為什么嗎? A D B C E F M A D E F C B 例6、如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,E為CD中點(diǎn),AE與BC的延長(zhǎng)線交于F. (1)判斷S△ABF和S梯形ABCD有何關(guān)系,并說(shuō)明理由. (2)判斷S△ABE和S梯形ABCD有何關(guān)系,并說(shuō)明

18、理由. (3)上述結(jié)論對(duì)一般梯形是否成立?為什么? A D E C B 例7、如圖,在梯形ABCD中,AD∥BC,E為CD的中點(diǎn),AD+BC=AB.則: (1)AE、BE分別平分∠DAB、∠ABC嗎?為什么? (2)AE⊥BE嗎?為什么? A P D Q B C 例8:在梯形ABCD中,∠B=900,AB=14cm ,AD=18cm ,BC=21cm,點(diǎn)P從點(diǎn)A開(kāi)始沿AD邊向點(diǎn)D以1 cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始沿CB向點(diǎn)B以2cm/s的速度移動(dòng),如果點(diǎn)P、Q分別從兩點(diǎn)同時(shí)出發(fā),多少秒后,梯形PBQD是等腰梯形?

19、 中心對(duì)稱與中心對(duì)稱圖形 一、知識(shí)點(diǎn): 1、圖形的旋轉(zhuǎn): 在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度,這樣的圖形運(yùn)動(dòng)稱為圖形的旋轉(zhuǎn),這個(gè)定點(diǎn)稱為旋轉(zhuǎn)中心,旋轉(zhuǎn)的角度稱為旋轉(zhuǎn)角。旋轉(zhuǎn)前、后的圖形全等。對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。每一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等。 2、中心對(duì)稱: 把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么稱這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱。

20、也稱這兩個(gè)圖形成中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心,兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做對(duì)稱點(diǎn)。 注意:①中心對(duì)稱是旋轉(zhuǎn)的一種特例,因此, 成中心對(duì)稱的兩個(gè)圖形具有旋轉(zhuǎn)圖形的一切性質(zhì)。 ②成中心對(duì)稱的2個(gè)圖形,對(duì)稱點(diǎn)的連線都經(jīng)過(guò)對(duì)稱中心, 并且被對(duì)稱中心平分。 3、中心對(duì)稱圖形: 把一個(gè)平面圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)就是它的對(duì)稱中心。 中心對(duì)稱圖形上的每一對(duì)對(duì)應(yīng)點(diǎn)所連成的線段都被對(duì)稱中心平分。 4、中心對(duì)稱與中心對(duì)稱圖形之間的關(guān)系: 區(qū)別:(1)中心對(duì)稱是指兩個(gè)圖形的關(guān)系,中心對(duì)稱圖形是指具有某種性質(zhì)的圖形。(2)成

21、中心對(duì)稱的兩個(gè)圖形的對(duì)稱點(diǎn)分別在兩個(gè)圖形上,中心對(duì)稱圖形的對(duì)稱點(diǎn)在一個(gè)圖形上。 聯(lián)系:若把中心對(duì)稱圖形的兩部分看成兩個(gè)圖形,則它們成中心對(duì)稱;若把中心對(duì)稱的兩個(gè)圖形看成一個(gè)整體,則成為中心對(duì)稱圖形 . 5、對(duì)比軸對(duì)稱圖形與中心對(duì)稱圖形: 軸對(duì)稱圖形 中心對(duì)稱圖形 有一條對(duì)稱軸——直線 有一個(gè)對(duì)稱中心——點(diǎn) 沿對(duì)稱軸對(duì)折 繞對(duì)稱中心旋轉(zhuǎn)180O 對(duì)折后與原圖形重合 旋轉(zhuǎn)后與原圖形重合 二、舉例: 例1:如圖,將點(diǎn)陣中的圖形繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)900,畫(huà)出旋轉(zhuǎn)后的圖形. · 例2:畫(huà)出將ΔABC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)120°后的對(duì)應(yīng)三角

22、形。 ·O C B A P′ P C B A 例3:如圖,已知ΔABC是直角三角形,BC為斜邊。若AP=3,將ΔABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,能與ΔACP′重合,求PP′的長(zhǎng)。 例4:如圖AC=BD,∠A=∠B,點(diǎn)E、F在AB上,且DE∥CF,試說(shuō)明此圖是中心對(duì)稱圖形的理由。 例5:已知:如圖,在△ABC中,∠BAC=1200,以BC為邊向形外作等邊三角形△BCD,把△ABD繞著點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)600后得到△ECD,若AB=3,AC=2,求∠BAD的度數(shù)與AD的長(zhǎng). 例6:如圖,直線l1⊥l2,垂足為O,點(diǎn)A1與點(diǎn)A關(guān)于直線l1對(duì)稱,點(diǎn)A2與點(diǎn)A關(guān)于直線l2對(duì)稱。點(diǎn)A1與點(diǎn)A2有怎樣的對(duì)稱關(guān)系?你能說(shuō)明理由嗎?

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!