7、M>N,∴選A.
10.【解析】選C.∵a>0>b,c0.
∴ad0>b>-a,∴a>-b>0.
∵c-d>0,
∴a(-c)>-b(-d),∴ac+bd<0,
∴+=<0,∴②正確;
∵c-d.
∵a>b,∴a+(-c)>b+(-d),
∴a-c>b-d,∴③正確;
∵a>b,d-c>0,
∴a(d-c)>b(d-c),
∴④正確,故選C.
11.【解析】依題意0
8、邊長(zhǎng)為xm,而墻長(zhǎng)為18m,
所以0
9、【解析】設(shè)=()m(xy2)n,
則x3y-4=x2m+ny2n-m,
∴即
∴=()2(xy2)-1,
又由題意得()2∈[16,81],∈[,],
所以=()2∈[2,27],
故的最大值是27.
答案:27
【方法技巧】待定系數(shù)法在解決一類最值問(wèn)題的應(yīng)用
此類問(wèn)題的一般解法是先用待定系數(shù)法把目標(biāo)式用己知式表示,再利用不等式的性質(zhì)求出目標(biāo)式的范圍,對(duì)于多項(xiàng)式問(wèn)題,也可以考慮用線性規(guī)劃的方法求解.
在本題中,設(shè)=()m(xy2)n是解答的關(guān)鍵,體現(xiàn)了待定系數(shù)法的思想.本題是冪式之間的關(guān)系,與以往的多項(xiàng)式之間的關(guān)系相比較是一大創(chuàng)新之處,要注意這一高考新動(dòng)向.
【變式備選】已知x,y為正實(shí)數(shù),滿足1≤lg(xy)≤2,3≤lg≤4,求lg(x4y2)的取值范圍.
【解析】設(shè)a=lgx,b=lgy,則lg(xy)=a+b,
lg=a-b,lg(x4y2)=4a+2b,
設(shè)4a+2b=m(a+b)+n(a-b),
∴解得
∴l(xiāng)g(x4y2)=3lg(xy)+lg,
∵3≤3lg(xy)≤6,3≤lg≤4,
∴6≤lg(x4y2)≤10.
15.【解析】設(shè)甲項(xiàng)目投資x百萬(wàn)元,乙項(xiàng)目投資y百萬(wàn)元,依題意,x,y滿足的不等式組為