《湖南省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練28 解答題專項(xiàng)訓(xùn)練(三角函數(shù)及解三角形) 理》由會(huì)員分享,可在線閱讀,更多相關(guān)《湖南省2013年高考數(shù)學(xué)第二輪復(fù)習(xí) 專題升級(jí)訓(xùn)練28 解答題專項(xiàng)訓(xùn)練(三角函數(shù)及解三角形) 理(5頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、專題升級(jí)訓(xùn)練28 解答題專項(xiàng)訓(xùn)練(三角函數(shù)及解三角形)
1.(2012·山東日照一模,17)已知f(x)=m·n,其中m=(sin ωx+cos ωx,cos ωx),n=(cos ωx-sin ωx,2sin ωx)(ω>0),若f(x)圖象中相鄰的兩條對稱軸間的距離不小于π.
(1)求ω的取值范圍;
(2)在△ABC中,a,b,c分別為角A,B,C的對邊,a=,S△ABC=.當(dāng)ω取最大值時(shí),f(A)=1,求b,c的值.
2.(2012·貴州適應(yīng)性考試,17)已知向量m=,n=.記f(x)=m·n.
(1)若f(x)=,求cos的值;
(2)在△ABC中,角A,B,C的對邊分別
2、是a,b,c,且滿足(2a-c)cos B=bcos C,若f(A)=,試判斷△ABC的形狀.
3.(2012·浙江五校聯(lián)考,18)在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a,b,c成等比數(shù)列,且sin Asin C=.
(1)求角B的大?。?
(2)若x[0,π),求函數(shù)f(x)=sin(x-B)+sin x的值域.
4.(2012·陜西西安高三質(zhì)檢,16)已知銳角△ABC的三個(gè)內(nèi)角為A,B,C,向量p=(cos A-sin A,1+sin A),向量q=(cos A+sin A,2-2sin A),且p⊥q.
(1)求角A;
(2)設(shè)AC=,sin2A+sin2B
3、=sin2C,求△ABC的面積.
5.(2012·浙江寧波4月模擬,18)已知A為銳角△ABC的一個(gè)內(nèi)角,滿足2sin2-cos 2A=+1.
(1)求角A的大?。?
(2)若BC邊上的中線長為3,求△ABC面積的最大值.
6.(2012·廣東汕頭二次質(zhì)檢,16)設(shè)函數(shù)f(x)=sin+2cos2-.
(1)求f(x)的最小正周期.
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x時(shí),求函數(shù)y=g(x)的最小值與相應(yīng)自變量x的值.
7.(2012·廣東廣州二模,16)已知函數(shù)f(x)=(cos x+sin x)(cos x-sin x).
(1)求函數(shù)f(x)
4、的最小正周期;
(2)若0<α<,0<β<,且f=,f=,求sin(α-β)的值.
8.(2012·四川綿陽三診,17)已知向量m=(sin x,-1),n=(cos x,3).
(1)當(dāng)m∥n時(shí),求的值;
(2)已知在銳角△ABC中,a,b,c分別為角A,B,C的對邊,c=2asin(A+B),函數(shù)f(x)=(m+n)·m,求f的取值范圍.
參考答案
1. 解:(1)f(x)=m·n=cos 2ωx+sin 2ωx=2sin.
∵f(x)圖象中相鄰的對稱軸間的距離不小于π,
∴≥π.∴≥π.∴0<ω≤.
(2)當(dāng)ω=時(shí),f(x)=2sin,
∴f(A)=2sin=1.
5、∴sin=.
∵0<A<π,∴<A+<,A=.
由S△ABC=bcsin A=,得bc=2.①
又a2=b2+c2-2bccos A,
∴b2+c2+bc=7.②
由①②,得b=1,c=2;或b=2,c=1.
2. 解:(1)f(x)=m·n=sincos+cos2
=sin+cos+
=sin+.
∵f(x)=,∴sin=1.
∴cos=1-2sin2=-1,
cos=-cos=1.
(2)∵(2a-c)cos B=bcos C,
由正弦定理得(2sin A-sin C)cos B=sin Bcos C,
∴2sin Acos B-sin Ccos B=sin B
6、cos C.
∴2sin Acos B=sin(B+C).
∵A+B+C=π,∴sin(B+C)=sin A,且sin A≠0.
∴cos B=.
又∵B(0,π),∴B=.
由f(x)=sin+,且f(A)=,
∴sin=,+=或+=,A=或A=π(舍去),
∴A=,C=,∴△ABC為正三角形.
3. 解:(1)因?yàn)閍,b,c成等比數(shù)列,則b2=ac.
由正弦定理得sin2B=sin Asin C.
又sin Asin C=,所以sin2B=.
因?yàn)閟in B>0,則sin B=.
因?yàn)锽(0,π),所以B=或.
又b2=ac,則b≤a或b≤c,即b不是△ABC的最
7、大邊,故B=.
(2)因?yàn)锽=,則f(x)=sin+sin x=sin xcos-cos xsin+sin x
=sin x-cos x=sin.
因?yàn)閤[0,π),則-≤x-<,
所以sin.
故函數(shù)f(x)的值域是.
4. 解:(1)∵p⊥q,
∴(cos A+sin A)(cos A-sin A)+(2-2sin A)(1+sin A)=0,
∴sin2A=.
而A為銳角,∴sin A=A=.
(2)由正弦定理得a2+b2=c2,
∴△ABC是直角三角形,且C=.
∴BC=AC×tan=×=3.
∴S△ABC=AC·BC=××3=.
5. 解:(1)由2sin
8、2-cos 2A=1-cos-cos 2A
=1+2sin=1+,
所以sin=.
∵A,2A-,
∴2A-=,得A=.
(2)由題意得|+|=6,
設(shè)△ABC中角A,B,C的對邊分別為a,b,c,
則b2+c2+2bccos A=36.
又b2+c2≥2bc,∴bc≤12.
∴S△ABC=bcsin A=bc≤3,等號(hào)當(dāng)b=c=2時(shí)取到.
∴△ABC面積的最大值為3.
6. 解:(1)f(x)=sin+2cos2-
=sincos-cossin+
=sin-cos+cos
=sin+cos=sin,
∴T===12.
(2)方法一:由題意知:
g(x)=f(
9、2-x)=sin
=sin=-sin.
∵x,∴-≤-≤.
∴g(x)min=-,此時(shí)-=,即x=.
方法二:可以求x關(guān)于x=1的對稱區(qū)間x上函數(shù)f(x)的最值.
7. 解:(1)∵f(x)=(cos x+sin x)(cos x-sin x)
=cos2x-sin2x=cos 2x,
∴函數(shù)f(x)的最小正周期為T==π.
(2)由(1)得f(x)=cos 2x.
∵f=,f=,
∴cos α=,cos β=.
∵0<α<,0<β<,
∴sin α==,sin β==.
∴sin(α-β)=sin αcos β-cos αsin β
=×-×=.
8. 解:(1)由m∥n,可得3sin x=-cos x,于是tan x=-.
∴===-.
(2)在△ABC中,A+B=π-C,于是sin(A+B)=sin C,
由正弦定理知:sin C=2sin A·sin C,
∴sin A=,可解得A=.
又△ABC為銳角三角形,于是<B<.
∵f(x)=(m+n)·m=(sin x+cos x,2)·(sin x,-1)
=sin2x+sin xcos x-2=+sin 2x-2
=sin-,
∴f=sin-=sin 2B-.
由<B<,得<2B<π,
∴0<sin 2B≤1,得-<sin 2B-≤-,
即f.