(浙江專用)2020版高考數(shù)學新增分大一輪復習 第七章 數(shù)列與數(shù)學歸納法 7.4 數(shù)列求和、數(shù)列的綜合應用(第1課時)課件.ppt
《(浙江專用)2020版高考數(shù)學新增分大一輪復習 第七章 數(shù)列與數(shù)學歸納法 7.4 數(shù)列求和、數(shù)列的綜合應用(第1課時)課件.ppt》由會員分享,可在線閱讀,更多相關《(浙江專用)2020版高考數(shù)學新增分大一輪復習 第七章 數(shù)列與數(shù)學歸納法 7.4 數(shù)列求和、數(shù)列的綜合應用(第1課時)課件.ppt(77頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、7.4數(shù)列求和、數(shù)列的綜合應用,,第七章數(shù)列與數(shù)學歸納法,,NEIRONGSUOYIN,內(nèi)容索引,基礎知識 自主學習,題型分類 深度剖析,課時作業(yè),1,基礎知識 自主學習,PART ONE,,知識梳理,1.等差數(shù)列的前n項和公式,ZHISHISHULI,,,,2.等比數(shù)列的前n項和公式,,3.一些常見數(shù)列的前n項和公式 (1)1234n . (2)13572n1 . (3)24682n .,n2,n(n1),4.數(shù)列求和的常用方法 (1)公式法 等差、等比數(shù)列或可化為等差、等比數(shù)列的可直接使用公式求和. (2)分組轉(zhuǎn)化法 把數(shù)列的每一項分成兩項或幾項,使其轉(zhuǎn)化為幾個等差、等比數(shù)
2、列,再求解. (3)裂項相消法 把數(shù)列的通項拆成兩項之差求和,正負相消剩下首尾若干項.,(4)倒序相加法 把數(shù)列分別正著寫和倒著寫再相加,即等差數(shù)列求和公式的推導過程的推廣. (5)錯位相減法 主要用于一個等差數(shù)列與一個等比數(shù)列對應項相乘所得的數(shù)列的求和,即等比數(shù)列求和公式的推導過程的推廣. (6)并項求和法 一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.形如an(1)nf(n)類型,可采用兩項合并求解. 例如,Sn10029929829722212(10099)(9897)(21)5 050.,,,基礎自測,JICHUZICE,題組一思考辨析,,,,1,2,3,4,5,6,,,7,
3、,1,2,3,4,5,6,(5)推導等差數(shù)列求和公式的方法叫做倒序求和法,利用此法可求得sin21sin22sin23sin288sin28944.5.() (6)如果數(shù)列an是周期為k的周期數(shù)列,那么SkmmSk(m,k為大于1的正整數(shù)).(),,,7,,,題組二教材改編,,1,2,3,4,5,6,2.P61A組T5一個球從100 m高處自由落下,每次著地后又跳回到原高度的一半再落下,當它第10次著地時,經(jīng)過的路程是 A.100200(129) B.100100(129) C.200(129) D.100(129),,7,,1,2,3,4,5,6,3.P61A組T4(3)12x3x2nxn1
4、______________(x0且x1).,解析設Sn12x3x2nxn1, 則xSnx2x23x3nxn, 得(1x)Sn1xx2xn1nxn,7,,1,2,3,4,5,6,題組三易錯自糾 4.已知數(shù)列an的前n項和為Sn,a11,當n2時,an2Sn1n,則S2 019等于 A.1 007 B.1 008 C.1 009 D.1 010,,解析由an2Sn1n得an12Snn1, 兩式相減得an1an2an1an1an1 S2 019a1(a2a3)(a2 018a2 019)1 009111 010.,7,,1,2,3,4,5,6,5.數(shù)列an的通項公式為an(1)n1(4n3),則它
5、的前100項之和S100等于 A.200 B.200 C.400 D.400,,解析S100(413)(423)(433)(41003) 4(12)(34)(99100) 4(50)200.,7,,1,2,3,4,5,6,1 008,故S4a1a2a3a42. a50,a66,a70,a88, 故a5a6a7a82,周期T4. S2 017S2 016a2 017,7,,1,2,3,4,5,6,4,7,2,題型分類深度剖析,PART TWO,第1課時數(shù)列求和的常用方法,,題型一分組轉(zhuǎn)化法求和,,師生共研,解當n1時,a1S11;,a1也滿足ann, 故數(shù)列an的通項公式為ann(nN*).,,
6、(2)設 求數(shù)列bn的前2n項和.,B(12)(34)(2n1)2nn. 故數(shù)列bn的前2n項和T2nAB22n1n2.,解由(1)知ann,故bn2n(1)nn. 記數(shù)列bn的前2n項和為T2n, 則T2n(212222n)(12342n). 記A212222n, B12342n,,本例(2)中,求數(shù)列bn的前n項和Tn.,,,解由(1)知bn2n(1)nn. 當n為偶數(shù)時, Tn(21222n)1234(n1)n,當n為奇數(shù)時,Tn(21222n)1234(n2)(n1)n,分組轉(zhuǎn)化法求和的常見類型 (1)若anbncn,且bn,cn為等差或等比數(shù)列,可采用分組求和法求an的前n項和.,提
7、醒:某些數(shù)列的求和是將數(shù)列轉(zhuǎn)化為若干個可求和的新數(shù)列的和或差,從而求得原數(shù)列的和,注意在含有字母的數(shù)列中對字母的討論.,跟蹤訓練1(2018溫州市適應性考試)已知數(shù)列an的前n項和為Sn,且a12,2Sn(n1)2ann2an1,數(shù)列bn滿足b1a1,nbn1anbn. (1)求數(shù)列an和bn的通項公式;,,解由2Sn(n1)2ann2an1, 可得2Sn1(n2)2an1(n1)2an2, 得2an12(n22n2)an1(n1)2an2(n1)2an, 所以2(n1)2an1(n1)2an2(n1)2an, 化簡得2an1an2an,所以an是等差數(shù)列. 由2S1(11)2a1a2可得a2
8、4, 所以公差da2a1422,故an22(n1)2n. 由b1a1,nbn1anbn以及an2n可知,b12, 2, 所以數(shù)列bn是以2為首項,2為公比的等比數(shù)列, 故bn22n12n.,(2)若數(shù)列cn滿足cnanbn(nN*),求數(shù)列cn的前n項和Tn.,n2n2n12.,解因為cnanbn2n2n, 所以Tn(22)(422)(623)(2n2n) (2462n)(222232n),,題型二錯位相減法求和,,師生共研,,解設等比數(shù)列an的公比為q(q1),,故an33n13n.,解由(1)知,cnn3n, 所以Tnc1c2c3cn13232n3n, 則3Tn132233(n1)3nn
9、3n1. 兩式相減得,2Tn332333nn3n1,錯位相減法求和時的注意點 (1)要善于識別題目類型,特別是等比數(shù)列公比為負數(shù)的情形. (2)在寫出“Sn”與“qSn”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“SnqSn”的表達式. (3)在應用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應分公比等于1和不等于1兩種情況求解.,(1)求數(shù)列an的通項公式;,,故數(shù)列an是公差為1的等差數(shù)列,又a11, 所以an1(n1)1n.,(2)設 ,數(shù)列bn的前n項和為Hn,求使得Hnn2n150成立的最小整數(shù)n.,解因為 n2n, 所以Hn(121222n2n
10、), 則2Hn(22223n2n1). 將以上兩式作差化簡可得Hnn2n12n12, 于是,Hnn2n150,即2n152,解得n5. 故最小正整數(shù)n是5.,,,,題型三裂項相消法求和,,多維探究,例3(2018浙江省金麗衢十二校聯(lián)考)已知等差數(shù)列an的公差為2,等比數(shù)列bn的公比為2,且anbnn2n. (1)求數(shù)列an和bn的通項公式;,解anbnn2n, 解得a12,b11, an22(n1)2n, bn2n1.,解an2n,bn2n1,,Tnc1c2c3c4cn1cn,,命題點3裂項相消法的靈活運用,例5(2018紹興諸暨市期末)已知等差數(shù)列an的公差為2,前n項和為Sn,且S1,S2
11、,S4成等比數(shù)列. (1)求數(shù)列an的通項公式;,由題意得(2a12)2a1(4a112), 解得a11,所以an2n1.,解由題意知Sn3n22n, 當n2時,anSnSn16n5, a1321,適合上式,an6n5.,跟蹤訓練3(2018紹興市六校質(zhì)檢)已知函數(shù)f(x)3x22x,數(shù)列an的前n項和為Sn,點(n,Sn)(nN*)均在函數(shù)f(x)的圖象上. (1)求數(shù)列an的通項公式;,3,課時作業(yè),PART THREE,,基礎保分練,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1
12、6,又a11,所以a22,則數(shù)列an的奇數(shù)項和偶數(shù)項分別構(gòu)成以2為公比的等比數(shù)列, 所以S2 018(a1a3a2 017)(a2a4a2 018),2.(2018杭州質(zhì)檢)設數(shù)列an滿足a11,an1an2n(nN*).若Sn為數(shù)列的前n項和,則S2 018等于 A.22 0161 B.321 0093 C.22 0093 D.22 0103,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,3.已知數(shù)列2 008,2 009,1,2 008,2 009,,這個數(shù)列的特點是從第二項起,每一項都等于它的前后兩項之和,則這個數(shù)列的前2 019項之和 S2 019
13、等于 A.4 018 B.2 010 C.1 D.0,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,解析由已知得anan1an1(n2), an1anan1. 故數(shù)列的前8項依次為2 008,2 009,1,2 008,2 009,1, 2 008,2 009. 由此可知此數(shù)列為周期數(shù)列,周期為6,且S60. 2 01963363, S2 019S32 0082 00914 018.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,4.在數(shù)列an中,若an1(1)nan2n1(nN*),則數(shù)列an的前12項和等于 A.76
14、 B.78 C.80 D.82,,解析由已知an1(1)nan2n1,得an2(1)n1an12n1, 得an2an(1)n(2n1)(2n1), 取n1,5,9及n2,6,10, 結(jié)果相加可得S12a1a2a3a4a11a1278.故選B.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析由題意,得a1a2a3a100 1222223232424252992100210021012 (12)(32)(43)(99100)(101100) (1299100)(23100101)
15、 1011100.故選B.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,解析 設等差數(shù)列an的公差為d,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,7.有窮數(shù)列1,12,124,,1242n1所有項的和為__________.,2n12n,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析anan12(n1)(nN*), 當n2時,an1an2n, an1an12, a2 018a2 0162,數(shù)列an的奇數(shù)
16、項和偶數(shù)項分別是公差為2的等差數(shù)列, 又a11,a23,,2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,,解得a13或a10. 由an0,得a13.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以(an1an)(an1an3)0. 因為an0,所以an1an0,an1an3. 即數(shù)列an是以3為首項,3為公差的等差數(shù)列, 所以an33(n1)3n.,,所以,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10
17、.(2018湖州市適應性考試)已知等比數(shù)列an滿足2a1a33a2,且a32是a2,a4的等差中項. (1)求數(shù)列an的通項公式;,解設等比數(shù)列an的首項為a1,公比為q, 依題意,有2(a32)a2a4, 即2(a1q22)a1qa1q3, 由2a1a33a2,得2a1a1q23a1q,解得q1或q2. 當q1時,不合題意,故舍去; 當q2時,代入式得a12,所以an2n.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,所以Sn212222332nn (222232n)(123n),1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
18、,16,因為Sn2n1470, 解得n9或n<10, 由nN*,故使Sn2n147<0成立的正整數(shù)n的最小值為10.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,t的最小正整數(shù)為2.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,12.(2018浙江衢州二中模擬)設數(shù)列an的前n項和為Sn,且Sn2an2. (1)求數(shù)列an的通項公式;,解當n1時,S12a12,所以a12. 當n2時,anSnSn1(2an2)(2an12)2an2an1,,所
19、以數(shù)列an是以2為首項,2為公比的等比數(shù)列, 所以數(shù)列an的通項公式為an22n12n.,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,技能提升練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,13.已知公差不為零的等差數(shù)列an中,a11,且a2,a5,a14成等比數(shù)列,an的前n項和為Sn,bn(1)nSn,則an________,數(shù)列bn的前n項和Tn ______
20、_______.,2n1,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析設等差數(shù)列an的公差為d(d0),,當n為偶數(shù)時,TnS1S2S3S4Sn1Sn,當n為大于1的奇數(shù)時,TnS1S2S3S4Sn1Sn 1223242(n2)2(n1)2n2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.“斐波那契數(shù)列”是數(shù)學史上一個著名數(shù)列,在斐波那契數(shù)列an中,a11,a21,,an2an1an(nN*),則a7___;若a2 021m,則數(shù)列an的前2 019項和是______ (用m表示).,13,m1,,1,2,3,4
21、,5,6,7,8,9,10,11,12,13,14,15,16,解析因為a11,a21,,an2an1an(nN*), 所以a3a1a2112,a4a2a3123,a5a3a4235, a6a4a5358,a7a5a65813. 由已知有a3a1a2,a4a2a3,,a2 021a2 019a2 020, 各式相加可得a2 021a2a1a2a3a2 019, 即a1a2a3a2 019a2 021a2m1, 故數(shù)列an的前2 019項和為m1.,拓展沖刺練,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,A.1 B.2 C.3 D.4,,,1,2,3,4,5,
22、6,7,8,9,10,11,12,13,14,15,16,又an1an(an1)20,則an1ana11, 當n2時,從而有(an1an)(anan1)(an1)2(an11)2(anan1) (anan12)0,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,9,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又an為正項數(shù)列, an1an10,即an1an1.,數(shù)列an是以1為首項,1為公差的等差數(shù)列. ann,,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,令n1t2,1n100, n3,8,15,24,35,48,63,80,99共9個數(shù). T1,T2,T3,,T100中有理數(shù)的個數(shù)為9.,
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 6.煤礦安全生產(chǎn)科普知識競賽題含答案
- 2.煤礦爆破工技能鑒定試題含答案
- 3.爆破工培訓考試試題含答案
- 2.煤礦安全監(jiān)察人員模擬考試題庫試卷含答案
- 3.金屬非金屬礦山安全管理人員(地下礦山)安全生產(chǎn)模擬考試題庫試卷含答案
- 4.煤礦特種作業(yè)人員井下電鉗工模擬考試題庫試卷含答案
- 1 煤礦安全生產(chǎn)及管理知識測試題庫及答案
- 2 各種煤礦安全考試試題含答案
- 1 煤礦安全檢查考試題
- 1 井下放炮員練習題含答案
- 2煤礦安全監(jiān)測工種技術比武題庫含解析
- 1 礦山應急救援安全知識競賽試題
- 1 礦井泵工考試練習題含答案
- 2煤礦爆破工考試復習題含答案
- 1 各種煤礦安全考試試題含答案