《六年級數(shù)學下冊 期末復習 知識要點匯總 新人教版(共8頁DOC)》由會員分享,可在線閱讀,更多相關《六年級數(shù)學下冊 期末復習 知識要點匯總 新人教版(共8頁DOC)(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、……………………………………………………………最新資料推薦…………………………………………………
知識要點匯總
第一單元 負數(shù)
1、負數(shù)的由來:
為了表示相反意義的兩個量(如盈利虧損、收入支出……),光有學過的0 1 3.4 2/5……是遠遠不夠的。所以出現(xiàn)了負數(shù),以盈利為正、虧損為負;以收入為正、支出為負
2、負數(shù):小于0的數(shù)叫負數(shù)(不包括0),數(shù)軸上0左邊的數(shù)叫做負數(shù)。
若一個數(shù)小于0,則稱它是一個負數(shù)。
負數(shù)有無數(shù)個,其中有(負整數(shù),負分數(shù)和負小數(shù))
負數(shù)的寫法:
數(shù)字前面加負號“-”號,不可以省略
例如:-2,-5.33,-45,-2/5
正數(shù)
2、:
大于0的數(shù)叫正數(shù)(不包括0),數(shù)軸上0右邊的數(shù)叫做正數(shù)
若一個數(shù)大于0,則稱它是一個正數(shù)。正數(shù)有無數(shù)個,其中有(正整數(shù),正分數(shù)和正小數(shù))
正數(shù)的寫法:數(shù)字前面可以加正號“+”號,也可以省略不寫。
例如:+2,5.33,+45,2/5
4、0?既不是正數(shù),也不是負數(shù),它是正、負數(shù)的分界限
負數(shù)都小于0,正數(shù)都大于0,負數(shù)都比正數(shù)小,正數(shù)都比負數(shù)大
5、數(shù)軸:
6、比較兩數(shù)的大小:
①利用數(shù)軸:
負數(shù)<0<正數(shù)?或?左邊<右邊
②利用正負數(shù)含義:正數(shù)之間比較大小,數(shù)字大的就大,數(shù)字小的就小。負數(shù)之間比較大小,數(shù)字大的反而小,數(shù)字小的反而大
1/3
3、>1/6 -1/3<-1/6
第二單元 百分數(shù)二
(一)、折扣和成數(shù)
1、折扣:用于商品,現(xiàn)價是原價的百分之幾,叫做折扣。通稱“打折”。
幾折就是十分之幾,也就是百分之幾十。例如:八折=8/10=80﹪,
六折五=6.5/10=65/100=65﹪
解決打折的問題,關鍵是先將打的折數(shù)轉(zhuǎn)化為百分數(shù)或分數(shù),然后按照求比一個數(shù)多(少)百分之幾(幾分之幾)的數(shù)的解題方法進行解答。
商品現(xiàn)在打八折:現(xiàn)在的售價是原價的80﹪
商品現(xiàn)在打六折五:現(xiàn)在的售價是原價的65﹪
2、成數(shù):
幾成就是十分之幾,也就是百分之幾十。例如:一成=1/10=10﹪
八成五=8.5/10=85
4、/100=80﹪
解決成數(shù)的問題,關鍵是先將成數(shù)轉(zhuǎn)化為百分數(shù)或分數(shù),然后按照求比一個數(shù)多(少)百分之幾(幾分之幾)的數(shù)的解題方法進行解答。
這次衣服的進價增加一成:這次衣服的進價比原來的進價增加10﹪
今年小麥的收成是去年的八成五:今年小麥的收成是去年的85﹪
(二)、稅率和利率
1、稅率
(1)納稅:納稅是根據(jù)國家稅法的有關規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。
(2)納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發(fā)展經(jīng)濟、科技、教育、文化和國防安全等事業(yè)。
(3)應納稅額:繳納的稅款叫做應納稅額。
(4)稅率:應納稅額與各種收入的
5、比率叫做稅率。
(5)應納稅額的計算方法:
應納稅額=總收入×稅率
收入額=應納稅額÷稅率
2、利率
(1)存款分為活期、整存整取和零存整取等方法。
(2)儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也使得個人用錢更加安全和有計劃,還可以增加一些收入。
(3)本金:存入銀行的錢叫做本金。
(4)利息:取款時銀行多支付的錢叫做利息。
(5)利率:利息與本金的比值叫做利率。
(6)利息的計算公式:
利息=本金×利率×時間
利率=利息÷時間÷本金×100%
(7)注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅后利
6、息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
稅后利息=本金×利率×時間×(1-利息稅率)
購物策略:
估計費用:根據(jù)實際的問題,選擇合理的估算策略,進行估算。
購物策略:根據(jù)實際需要,對常見的幾種優(yōu)惠策略加以分析和比較,并能夠最終選擇最為優(yōu)惠的方案
學后反思:做事情運用策略的好處
第三單元 圓柱和圓錐
一、圓柱
1、圓柱的形成:圓柱是以長方形的一邊為軸旋轉(zhuǎn)而得的。
圓柱也可以由長方形卷曲而得到。
兩種方式:
1.以長方形的長為底面周長,寬為高;
2.以長方形的寬為底面周長,長為高。
其中,第一種方式得到的圓柱體體積較大。
7、
2、圓柱的高是兩個底面之間的距離,一個圓柱有無數(shù)條高,他們的數(shù)值是相等的
3、圓柱的特征:
(1)底面的特征:圓柱的底面是完全相等的兩個圓。
(2)側(cè)面的特征:圓柱的側(cè)面是一個曲面。
(3)高的特征?:圓柱有無數(shù)條高
4、圓柱的切割:
①橫切:切面是圓,表面積增加2倍底面積,即S?增?=2πr2
②豎切(過直徑):切面是長方形(如果h=2R,切面為正方形),該長方形的長是圓柱的高,寬是圓柱的底面直徑,表面積增加兩個長方形的面積,即S增=4rh
5、圓柱的側(cè)面展開圖:
①沿著高展開,展開圖形是長方形,如果h=2πr,則展開圖形為正方形
②不沿著高展開,展開圖形是平
8、行四邊形或不規(guī)則圖形
③無論怎么展開都得不到梯形
6、圓柱的相關計算公式:
底面積?:S底=πr2
底面周長:C底=πd=2πr
側(cè)面積?:S側(cè)=2πrh
表面積?:S表=2S底+S側(cè)=2πr2+2πrh
體積?:V柱=πr2h
考試常見題型:
①已知圓柱的底面積和高,求圓柱的側(cè)面積,表面積,體積,底面周長
②已知圓柱的底面周長和高,求圓柱的側(cè)面積,表面積,體積,底面積
③已知圓柱的底面周長和體積,求圓柱的側(cè)面積,表面積,高,底面積
④已知圓柱的底面面積和高,求圓柱的側(cè)面積,表面積,體積
⑤已知圓柱的側(cè)面積和高,求圓柱的底面半徑,表面積,體積,底面積
以
9、上幾種常見題型的解題方法,通常是求出圓柱的底面半徑和高,再根據(jù)圓柱的相關計算公式進行計算
無蓋水桶的表面積=側(cè)面積+一個底面積油桶的表面積=側(cè)面積+兩個底面積
煙囪通風管的表面積=側(cè)面積
只求側(cè)面積:燈罩、排水管、漆柱、通風管、壓路機、衛(wèi)生紙中軸、薯片盒包裝
側(cè)面積+一個底面積:玻璃杯、水桶、筆筒、帽子、游泳池
側(cè)面積+兩個底面積:油桶、米桶、罐桶類
二、圓錐
1、圓錐的形成:圓錐是以直角三角形的一直角邊為軸旋轉(zhuǎn)而得到的。圓錐也可以由扇形卷曲而得到。
2、圓錐的高是兩個頂點與底面之間的距離,與圓柱不同,圓錐只有一條高
3、圓錐的特征:
(1)底面的特征:圓錐的底
10、面一個圓。
(2)側(cè)面的特征:圓錐的側(cè)面是一個曲面。
(3)高的特征:圓錐有一條高。
4、圓錐的切割:
①橫切:切面是圓
②豎切(過頂點和直徑直徑):切面是等腰三角形,該等腰三角形的高是圓錐的高,底是圓錐的底面直徑,面積增加兩個等腰三角形的面積,
即S增=2rh
5、圓錐的相關計算公式:
底面積:S底=πr2
底面周長:C底=πd=2πr
體積:V錐=1/3πr2h
考試常見題型:
①已知圓錐的底面積和高,求體積,底面周長
②已知圓錐的底面周長和高,求圓錐的體積,底面積
③已知圓錐的底面周長和體積,求圓錐的高,底面積
以上幾種常見題型的解題方法,通常是求出圓錐
11、的底面半徑和高,再根據(jù)圓柱的相關計算公式進行計算
三、圓柱和圓錐的關系
1、圓柱與圓錐等底等高,圓柱的體積是圓錐的3倍。
2、圓柱與圓錐等底等體積,圓錐的高是圓柱的3倍。
3、圓柱與圓錐等高等體積,圓錐的底面積(注意:是底面積而不是底面半徑)是圓柱的3倍。
4、圓柱與圓錐等底等高?,體積相差2/3Sh
題型總結(jié)
①直接利用公式:分析清楚求的的是表面積,側(cè)面積、底面積、體積
分析清楚半徑變化導致底面周長、側(cè)面積、底面積、體積的變化
分析清楚兩個圓柱(或兩個圓錐)半徑、底面積、底面周長、側(cè)面積、表面積、體積之比
②圓柱與圓錐關系的轉(zhuǎn)換:包括削成最大體積的問題(正方體,長
12、方體與圓柱圓錐之間)
③橫截面的問題
④浸水體積問題:(水面上升部分的體積就是浸入水中物品的體積,等于盛水容積的底面積乘以上升的高度)容積是圓柱或長方體,正方體
⑤等體積轉(zhuǎn)換問題:一個圓柱融化后做成圓錐,或圓柱中的溶液倒入圓錐,都是體積不變的?問題,注意不要乘以1/3
第四單元 比例
1、比的意義(1)兩個數(shù)相除又叫做兩個數(shù)的比
(2)“:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。
(3)同除法比較,比的前項相當于被除數(shù),后項相當于除數(shù),比值相當于商。
(4)比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也
13、可能是整數(shù)。
(5)比的后項不能是零。
(6)根據(jù)分數(shù)與除法的關系,可知比的前項相當于分子,后項相當于分母,比值相當于分數(shù)值。
2、比的基本性質(zhì):比的前項和后項同時乘或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質(zhì)。
3、求比值和化簡比:
求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。
根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。它的結(jié)果必須是一個最簡比,即前、后項是互質(zhì)的數(shù)。
4、按比例分配:
在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分占總量的幾分之
14、幾,然后求出總數(shù)的幾分之幾是多少。
5、比例的意義:表示兩個比相等的式子叫做比例。
組成比例的四個數(shù),叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
6、比例的基本性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)項的積。這叫做比例的基本性質(zhì)。
7、比和比例的區(qū)別
(1)比表示兩個量相除的關系,它有兩項(即前、后項);比例表示兩個比相等的式子,它有四項(即兩個內(nèi)項和兩個外項)。
(2)比有基本性質(zhì),它是化簡比的依據(jù);比例也有基本性質(zhì),它是解比例的依據(jù)。
8、成正比例的量:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這
15、兩種量就叫做成正比例的量,他們的關系叫做正比例關系。
用字母表示x/y=k(一定)
9、成反比例的量:兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關系叫做反比例關系。
用字母表示x×y=k(一定)
10、判斷兩種量成正比例還是成反比例的方法:
關鍵是看這兩個相關聯(lián)的量中相對就的兩個數(shù)的商一定還是積一定,如果商一定,就成正比例;如果積一定,就成反比例。
11、比例尺:一幅圖的圖上距離和實際距離的比,叫做這幅圖的比例尺。
12、比例尺的分類
(1)數(shù)值比例尺和線段比例尺?(2)縮小比例尺
16、和放大比例尺
13、圖上距離:
圖上距離/實際距離=比例尺
實際距離×比例尺=圖上距離
圖上距離÷比例尺=實際距離
14、應用比例尺畫圖的步驟:
(1)寫出圖的名稱、
(2)確定比例尺;
(3)根據(jù)比例尺求出圖上距離;
(4)畫圖(畫出單位長度)
(5)標出實際距離,寫清地點名稱
(6)標出比例尺
15、圖形的放大與縮?。盒螤钕嗤笮〔煌?。
16、用比例解決問題:
根據(jù)問題中的不變量找出兩種相關聯(lián)的量,并正確判斷這兩種相關聯(lián)的量成什么比例關系,并根據(jù)正、反比例關系式列出相應的方程并求解。
17、常見的數(shù)量關系式:(成正比例或成反比例)
17、單價×數(shù)量=總價
單產(chǎn)量×數(shù)量=總產(chǎn)量
速度×時間=路程
工效×工作時間=工作總量
18、
已知圖上距離和實際距離可以求比例尺。
已知比例尺和圖上距離可以求實際距離。
已知比例尺和實際距離可以求圖上距離。
計算時圖距和實距單位必須統(tǒng)一。
19、播種的總公頃數(shù)一定,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?
答:每天播種的公頃數(shù)×天數(shù)=播種的總公頃數(shù)
已知播種的總公頃數(shù)一定,就是每天播種的公頃數(shù)和要用的天數(shù)的積是一定的,所以每天播種的公頃數(shù)和要用的天數(shù)成反比例。
第五單元 數(shù)學廣角-鴿巢問題
1、鴿巣原理是一個重要而又基本的組合原理,?在解決數(shù)學問題時
18、有非常重要的作用
①什么是鴿巣原理,?先從一個簡單的例子入手,?把3個蘋果放在2個盒子里,?共有四種不同的放法,如下表
放法
盒子1
盒子2
1
3
0
2
2
1
3
1
2
4
0
3
無論哪一種放法,?都可以說“必有一個盒子放了兩個或兩個以上的蘋果”。?這個結(jié)論是在“任意放法”的情況下,?得出的一個“必然結(jié)果”。
類似的,?如果有5只鴿子飛進四個鴿籠里,?那么一定有一個鴿籠飛進了2只或2只以上的鴿子
如果有6封信,?任意投入5個信箱里,?那么一定有一個信箱至少有2封信
我們把這些例子中的“蘋果”、“鴿子”、“信”看作一種物體,把“盒子”、“鴿籠”、
19、“信箱”看作鴿巣,?可以得到鴿巣原理最簡單的表達形式
②利用公式進行解題:
物體個數(shù)÷鴿巣個數(shù)=商……余數(shù)
至少個數(shù)=商+1
2、摸2個同色球計算方法。
①要保證摸出兩個同色的球,摸出的球的數(shù)量至少要比顏色數(shù)多1。
物體數(shù)=顏色數(shù)×(至少數(shù)-1)+1
②極端思想:?用最不利的摸法先摸出兩個不同顏色的球,再無論摸出一個什么顏色的球,都能保證一定有兩個球是同色的。
③公式:
兩種顏色:2+1=3(個)
三種顏色:3+1=4(個)
四種顏色:4+1=5(個)
最新精品資料整理推薦,更新于二〇二一年七月三十日2021年7月30日星期五21:36:29