概念高等數(shù)學(xué)微積分

上傳人:san****019 文檔編號:15801041 上傳時間:2020-09-07 格式:PPT 頁數(shù):22 大?。?93.60KB
收藏 版權(quán)申訴 舉報 下載
概念高等數(shù)學(xué)微積分_第1頁
第1頁 / 共22頁
概念高等數(shù)學(xué)微積分_第2頁
第2頁 / 共22頁
概念高等數(shù)學(xué)微積分_第3頁
第3頁 / 共22頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《概念高等數(shù)學(xué)微積分》由會員分享,可在線閱讀,更多相關(guān)《概念高等數(shù)學(xué)微積分(22頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第6章 常微分方程,對自然界的深刻研究,傅里葉,微積分研究的對象是函數(shù)關(guān)系,,但在實際問題中,,往往很難直接得到,所研究的變量之間的函數(shù)關(guān)系,,卻,比較容易建立起,這些變量與它們的導(dǎo)數(shù)或微分之,間的聯(lián)系,,從而得到一個,分的方程,,即微分方程.,通過求解這種方程,,同樣可,以找到指定未知量之間的函數(shù)關(guān)系.,因此,,微分方程是數(shù)學(xué)聯(lián),關(guān)于未知函數(shù)的導(dǎo)數(shù)或微,是數(shù)學(xué)最富饒的源泉.,系實際,,并應(yīng)用于實際,并應(yīng)用于實際的重要途徑和橋梁,,是各個學(xué)科進行,科學(xué)研究的強有力的工具.,如果說“數(shù)學(xué)是一門理性思維的科學(xué),,是研究、,了,解和知曉現(xiàn)實世界的工具”,,那么微分方程就是,顯示數(shù)學(xué)的這種威力和價值的

2、一種體現(xiàn).,現(xiàn)實世界中的許,多實際問題,都可以抽象為微分,方程問題.例如,,物體,的冷卻、,琴弦的,震動、電磁波的傳播等,,都可以歸結(jié)為微分方程,的問題.,人口的增長、,微分方程是一門獨立的數(shù)學(xué)學(xué)科,,有完整的,理論體系.,本章我們主要介紹微分方程的一些基本概念,,種常用的微分方程的求解方法,,線性微分方程,解的理論.,幾,這時微分方程也稱為,所研究問題的數(shù)學(xué)模型.,解,一、問題的提出,6.1 微分方程的基本概念,解,代入條件后知,故,開始制動到列車完全停住共需,微分方程: 凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫微分方程.,例,實質(zhì): 聯(lián)系自變量,未知函數(shù)以及未知函數(shù)的某些導(dǎo)數(shù)(或微分)之間的關(guān)系

3、式.,二、微分方程的定義,微分方程的階: 微分方程中出現(xiàn)的未知函數(shù)的最 高階導(dǎo)數(shù)的階數(shù)稱之.,分類1: 常微分方程, 偏常微分方程.,一階微分方程,高階(n)微分方程,分類2:,分類3: 線性與非線性微分方程.,分類4: 單個微分方程與微分方程組.,微分方程的解: 代入微分方程能使方程成為恒等式的函數(shù)稱之.,微分方程的解的分類:,三、主要問題-----求方程的解,(1)通解: 微分方程的解中含有任意常數(shù),且任意常數(shù)的個數(shù)與微分方程的階數(shù)相同.,(2)特解: 確定了通解中任意常數(shù)以后的解.,解的圖象: 微分方程的積分曲線.,通解的圖象: 積分曲線族.,初始條件: 用來確定任意常數(shù)的條件.,過定點

4、的積分曲線;,一階:,二階:,過定點且在定點的切線的斜率為定值的積分曲線.,初值問題: 求微分方程滿足初始條件的解的問題.,求所滿足的微分方程 .,例2. 已知曲線上點 P(x, y) 處的法線與 x 軸交點為 Q,,解: 如圖所示,,令 Y = 0 , 得 Q 點的橫坐標,即,,,,點 P(x, y) 處的法線方程為,且線段 PQ 被 y 軸平分,,解,所求特解為,補充:,微分方程的初等解法: 初等積分法.,求解微分方程,,求積分,(通解可用初等函數(shù)或積分表示出來),例5,其中,為任意常數(shù).,解,求曲線族所滿足的方程,,就是求一微分方程,,所給的曲線族正好是該微分方程的積分曲線族.,此所求的微分方程的階數(shù)應(yīng)與,常數(shù)的個數(shù)相等.,這里,,法來得到所求的微分方程.,已知曲線族中的任意,我們通過消去任意常數(shù)的方,得,再從,解出,代入上式得,使,因,化簡即得到所求的微分方程,微分方程;,微分方程的階;,微分方程的解;,通解;,初始條件;,特解;,初值問題;,積分曲線;,四、小結(jié),思考題,思考題解答,中不含任意常數(shù),,故為微分方程的特解.,練 習(xí) 題,練習(xí)題答案,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!