高中數(shù)學 第一章 計數(shù)原理 1_2_1 排列 第2課時 排列的應用課件 新人教A版選修2-3

上傳人:san****019 文檔編號:16356458 上傳時間:2020-09-28 格式:PPT 頁數(shù):41 大?。?3.38MB
收藏 版權申訴 舉報 下載
高中數(shù)學 第一章 計數(shù)原理 1_2_1 排列 第2課時 排列的應用課件 新人教A版選修2-3_第1頁
第1頁 / 共41頁
高中數(shù)學 第一章 計數(shù)原理 1_2_1 排列 第2課時 排列的應用課件 新人教A版選修2-3_第2頁
第2頁 / 共41頁
高中數(shù)學 第一章 計數(shù)原理 1_2_1 排列 第2課時 排列的應用課件 新人教A版選修2-3_第3頁
第3頁 / 共41頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第一章 計數(shù)原理 1_2_1 排列 第2課時 排列的應用課件 新人教A版選修2-3》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第一章 計數(shù)原理 1_2_1 排列 第2課時 排列的應用課件 新人教A版選修2-3(41頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第2課時排列的應用,,自主學習 新知突破,1掌握常見的幾種有限制條件的排列問題 2能應用排列與排列數(shù)公式解決簡單的實際應用問題,甲、乙、丙三人排成一排,你能寫出甲必須站在乙左側的全部排法嗎?,(1)特殊元素優(yōu)先法:對于有特殊元素的排列問題,一般應先考慮_________元素,再考慮其他元素 (2)特殊位置優(yōu)先法:對于有特殊位置的排列問題,一般先考慮_________位置,再考慮其他位置 (3)相鄰問題捆綁法:對于要求某幾個元素相鄰的排列問題,可將相鄰的元素“捆綁”起來,看作一個“大”元素,與其他元素一起排列,然后再對_______元素內(nèi)部進行排列,解決排列問題常用的方法,,特殊,特殊,捆綁,(

2、4)不相鄰問題插空法:對于要求有幾個元素不相鄰的排列問題,可先將其他元素排好,然后將________的元素插入在已排好的元素之間及兩端空隙處,不相鄰,16名學生排成兩排,每排3人,則不同的排法種數(shù)為() A36B120 C720D240 答案:C,2要為5名志愿者和他們幫助的2位老人拍照,要求排成一排,2位老人相鄰但不排在兩端,不同的排法共有() A1 440種B960種 C720種D480種,3若把英語單詞“good”的字母順序?qū)戝e了,則可能出現(xiàn)的錯誤共有________種,4喜羊羊家族的四位成員與灰太狼,紅太狼進行談判,通過談判他們握手言和,準備一起照合影像(排成一排) (1)要求喜羊羊家

3、族的四位成員必須相鄰,有多少種排法? (2)要求灰太狼、紅太狼不相鄰,有多少種排法?,,合作探究 課堂互動,無限制條件的排列問題,(1)有5個不同的科研小課題,從中選3個由高二(2)班的3個學習興趣小組進行研究,每組一個課題,共有多少種不同的安排方法? (2)有5個不同的科研小課題,高二(6)班的3個學習興趣小組報名參加,每組限報一個課題,共有多少種不同的報名方法? 思路點撥(1)選出3個課題進行排列; (2)每個學習小組都選一個課題,(1)從5個不同的課題中選出3個,由興趣小組進行研究,對應于從5個不同元素中取出3個元素的一個排列 因此不同的安排方法有A54360種 (2)由題意知,3個興趣

4、小組可能報同一科研課題,因此元素可以重復,不是排列問題 由于每個興趣小組都有5種不同的選擇,且3個小組都選擇完才算完成這件事由分步乘法計數(shù)原理得,共有555125種報名方法,規(guī)律方法沒有限制條件的排列問題,即對所排列的元素或所排列的位置沒有特別的限制,這一類題相對簡單,分清元素和位置即可,1某信號兵用紅、黃、藍3面旗從上到下掛在豎直的旗桿上表示信號,每次可以任掛1面、2面或3面,并且不同的順序表示不同的信號,則一共可以表示________種不同的信號,答案:15,“在”與“不在”的問題,6個人按下列要求站一橫排,分別有多少種不同的站法? (1)甲不站右端,也不站左端; (2)甲、乙站在兩端;

5、(3)甲不站左端,乙不站右端,思路點撥,,規(guī)律方法排列問題的實質(zhì)是“元素”占“位子”問題,有限制條件的排列問題的限制條件主要表現(xiàn)在某元素不排在某個位子上或某個位子不排某些元素,解決該類排列問題的方法主要是按“優(yōu)先”原則,即優(yōu)先排特殊元素或優(yōu)先滿足特殊位子,2(1)某天課程表要排入政治、語文、數(shù)學、物理、化學、體育共6門課程,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學,一共有多少種不同的排法? (2)用0,1,2,,9十個數(shù)字可組成多少個滿足以下條件的且沒有重復數(shù)字的數(shù): 五位奇數(shù); 大于30 000的五位偶數(shù),“相鄰”與“不相鄰”問題,7人站成一排, (1)甲、乙兩人相鄰的排法有多少種? (2)甲、

6、乙兩人不相鄰的排法有多少種? (3)甲、乙、丙三人必相鄰的排法有多少種? (4)甲、乙、丙三人兩兩不相鄰的排法有多少種?,思路點撥元素相鄰,可以視為一個元素,即將甲、乙或甲、乙、丙“捆綁”在一起,視為一個元素,與其他元素一起排列至于不相鄰問題,可以用“總”的排法減去“相鄰”的排法,也可以用插空法解決,規(guī)律方法元素相鄰和不相鄰問題的解題策略,34個男同學和3個女同學站成一排 (1)3個女同學必須排在一起,有多少種不同的排法? (2)任何兩個女同學彼此不相鄰,有多少種不同的排法? (3)其中甲、乙兩同學之間必須恰有3人,有多少種不同的排法? (4)男生與女生相間排列的方法有多少種?,從6名志愿者中選出4人分別從事翻譯、導游、導購、保潔四項工作,若其中甲、乙兩名志愿者都不能從事翻譯工作,則選派方案共有多少種?,提示上述解答是首先考慮甲、乙兩個特殊元素,但考慮不周全,甲、乙二人還可能選不上呢,或者只選甲、乙二人中的一人呢,所以應分三類情況,

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!