大地測量實驗報告

上傳人:jun****875 文檔編號:17751362 上傳時間:2020-12-05 格式:DOC 頁數(shù):24 大小:479.41KB
收藏 版權申訴 舉報 下載
大地測量實驗報告_第1頁
第1頁 / 共24頁
大地測量實驗報告_第2頁
第2頁 / 共24頁
大地測量實驗報告_第3頁
第3頁 / 共24頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《大地測量實驗報告》由會員分享,可在線閱讀,更多相關《大地測量實驗報告(24頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 大地測量實習報告 學 號: 姓 名: 班 級: 專 業(yè): 課程名稱: 指導老師: 2014年04月 目錄 前言 3 一、 大地測量坐標與空間直角坐標的相互轉換 4 1.1坐標正算: 4 1.2坐標反算: 5 二、高斯投影正反算 6 2.1高斯投影正算 6 2.2高斯投影反算 8 三、擴展 14 1.高斯投影正算公式: 14 2.高斯投影反算公式: 15 四、總結 16

2、附坐標轉換C程序 19 前言 本課程是測繪工程專業(yè)及相關專業(yè)學生及工程科技人員應掌握的一門專業(yè)基礎課。它涵蓋了大地測量整個領域的基本理論和方法,其中包括地球重力場及地球形狀,坐標系建立,地球橢球幾何與物理性質,地圖投影及坐標計算和核算,控制網(wǎng)布設等。學習本課程的內容,能夠為后續(xù)專業(yè)課的學習及繼續(xù)深造打下比較牢固的基礎;同時為相關專業(yè)學生奠定有關地學大地測量方面的基礎知識,為今后工作奠定基礎。因此,這是測繪工程專業(yè)及相關專業(yè)教學實施的重要任務之一。 本課程要求學生在具有測量學,高等數(shù)學,線性代數(shù),測量平差,普通物理以及計算機

3、的應用技術知識的基礎上進行學習,并要求不但要掌握大地測量的基本理論,而且也要掌握大地測量的基本技術與觀測方 法。老師應具有比較寬厚的大地測量理論知識、豐富的實踐經(jīng)驗和教學經(jīng)驗,并要跟蹤本學科發(fā)展前沿動態(tài),在教學中結合網(wǎng)絡資源采用導向性的教學方式,結合多媒體等現(xiàn)代化教學手段達到最佳的教學效果。 上機實習的內容主要有:大地測量坐標與空間直角坐標的相互轉換,高斯投影正反算,以及它們的應用與改進方法。 一、 大地測量坐標與空間直角坐標的相互轉換 1.1坐標正算: 式

4、中,B為緯度,L為經(jīng)度, H為大地高,X、Y、Z為空間坐標. N=a/W, N為橢球的卯酉圈曲率半徑 a為橢球的長半軸,a= 6378.137km, b為橢球的短半軸,b= 6356.7523141km. W為輔助函數(shù),, e為橢球的第一偏心率,e2 =0.00669437999013.,. 1.2坐標反算: 式中 B為緯度,L為經(jīng)度, H為大地高,X、Y、Z為空間坐標. ,, a為橢球的長半軸,a= 6378.137km, b為橢球的短半軸,b= 6356.7523141km. 地球半徑R, N=a/W, N為橢球的卯酉圈曲率半徑 W為

5、輔助函數(shù),, e為橢球的第一偏心率,e2 =0.00669437999013.,. 二、高斯投影正反算 2.1高斯投影正算 高斯投影必須滿足以下三個條件: ①中央子午線投影后為直線;②中央子午線投影后長度不變;③投影具有正形性質,即正形投影條件。 由第一條件知中央子午線東西兩側的投影必然對稱于中央子午線,即(8-10)式中,x為的偶函數(shù),y為的奇函數(shù);,即,如展開為的級數(shù),收斂。 (8-33) 式中是待定系數(shù),它們都是緯度B的函數(shù)。 由第三個條件知:

6、(8-33)式分別對和q求偏導數(shù)并代入上式 (8-34) 上兩式兩邊相等,其必要充分條件是同次冪前的系數(shù)應相等,即 (8-35) (8-35)是一種遞推公式,只要確定了就可依次確定其余各系數(shù)。 由第二條件知:位于中央子午線上的點,投影后的縱坐標x應等于投影前從赤道量至該點的子午線弧長X,即(8-33)式第一式中,當時有: (8-36) 顧及(對于中央子午線) 得:

7、 (8-37,38) (8-39) 依次求得并代入(8-33)式,得到高斯投影正算公式 2.2高斯投影反算 x,y B, 投影方程: (8-43) 滿足以下三個條件: ①x坐標軸投影后為中央子午線是投影的對稱軸;② x坐標軸投影后長度不變;③投影具有正形性質,即正形投影條件。 高斯投影坐標反算公式推導要復雜些。 ①由x求底點緯度(垂足緯度),對應的有底點處的等量緯度,求x,y與的關系式,仿照(8-10)式

8、有, 由于y和橢球半徑相比較小(1/16.37),可將展開為y的冪級數(shù);又由于是對稱投影,q必是y的偶函數(shù),必是y的奇函數(shù)。 (8-45) 是待定系數(shù),它們都是x的函數(shù). 由第三條件知: , , (8-21) (8-45)式分別對x和y求偏導數(shù)并代入上式 上式相等必要充分條件,是同次冪y前的系數(shù)相等, 第二條件,當y=0時,點在中央子午線上,即x=X,對應的點稱為底點,其緯度為底點緯度,也就是x=X時的子午線弧長所對應的緯度

9、,設所對應的等量緯度為。也就是在底點展開為y的冪級數(shù)。 由(8-45)1式 依次求得其它各系數(shù) (8-51) (8-51)1 …………

10、

11、 將代入(8-45)1式得 (8-55)1 (8-55) 將代入(8-45)2式得(8-56)2式。(最后表達式) ②求與的關系。 由(8-7)式知: (8-47) (8-48)

12、 按臺勞級數(shù)在展開 (8-49) (8-50) 由(8-7)式可求出各階導數(shù): (8-53) (8-54)1 (8-54)2 ………………… 將式(8-55)1,(8-55),(8-53),(8-54)代入(8-50)式并按y冪集合得高斯投影坐標反算公式(8-56)1, 三、擴展 在高斯投影坐標計算的實際工作中,往往采用

13、查表和電算兩種方法,為此基于高斯投影的正反算,相應的也有兩種實用的公式,一下僅以實用于電算的高斯投影坐標計算為例。 1.高斯投影正算公式: 式中,,分別為高斯平面縱坐標與橫坐標,為子午線收斂角,單位為度。 為子午線弧長,對于克氏橢球: 對于國際橢球: 其余符號為: ,稱作第二偏心率;,稱作極曲率半徑。為中央子午線經(jīng)度。 對于克氏橢球: 對于國際橢球: 算出的橫坐標應加上500公里,再在前冠以帶號,才是常見的橫坐標形式。 2.高斯投影反算公式: 式中,為底點緯度,以度為單位。,其余符號同正算公式,只是以底點緯度代替大地緯度。

14、 四、總結 我們在測繪,地質工作中,常常會遇到不同坐標系統(tǒng)間,坐標轉換的問題。目前國內常見的轉換有以下 3 種:1,大地坐標(BLH)對平面直角坐標(XYZ)的轉換;2,北京 54對西安 80 及 WGS84 坐標系的相互轉換;3,北京 54 對地方坐標的轉換。 常用的方法有參數(shù)法、四參數(shù)法和七參數(shù)法。 大地坐標(BLH)對平面直角坐標(XYZ)的轉換 該類型的轉換常用于坐標換帶計算!對于這種轉換應先確定轉換參數(shù),即橢球參數(shù)、分帶標準(3 度,6 度)和中央子午線的經(jīng)度。橢球參數(shù)就是指平面直角坐標系采用什么樣的橢球基準,對應有不同的長短軸及扁率。對于中央子午線的確定有兩

15、種方法,一是根據(jù)帶號與中央子午線經(jīng)度的公式(3 度帶 L=3n, 6 度帶 L=6n-3)計算。在 3 度帶中是取平面直角坐標系中 Y 坐標的前兩位乘以 3,即可得到對應的中央子午線的經(jīng)度。另一種方法是根據(jù)高斯-克呂格投影分帶各中央子午線與帶號的對應關系圖表確定。 確定參數(shù)之后,可以用軟件進行轉換。 以下以坐標轉換軟件 COORD GM 說明如何將一組 6 度帶的 XYZ 坐標轉化為當前坐標系統(tǒng)下的(BLH)及 3 度帶的(XYZ)坐標。 已知點 C1003 其 6 度帶的北京 54 坐標為 X=3291807.790 米,Y=20673770.085 米 ,Z=111.14

16、5 米可知該點 6 度帶的中央子午線為 117 度,3 度帶為 120 度。 首先打開 COORD GM,坐標轉換→換帶計算。然后設置好轉換前后的中央子午線如圖設置轉換前中央子午線: 再在主界面上輸入相應的坐標值就可以輸出(BLH)及 3 度帶的(XYZ)坐標。如圖:大地直角坐標(BLH) 小結:對于轉換點較多的情況可采取文件轉換的方法。由于該轉換在同一個橢球里完成所以是嚴密的,高精度的。 附坐標轉換C程序 坐標正算程序 #include #include #define PI 3.141592653 #def

17、ine E 0.006694379 #define a 6378137 int main() { double dd1,mm1,ss1,dd2,mm2,ss2,B,L,H,N; double X,Y,Z; printf("enter the dd1,mm1,ss1,dd2,mm2,ss2,H:"); scanf("%lf%lf%lf%lf%lf%lf%lf",&dd1,&mm1,&ss1,&dd2,&mm2,&ss2,&H); B=(dd1+mm1/60.0+ss1/3600.0)*PI/180.0; L=(dd2+mm2/60.0+ss2/3600.0)*PI/180.0;

18、 N=a/sqrt(1-E*(sin(B)*sin(B))); X=(N+H)*cos(B)*cos(L); Y=(N+H)*cos(B)*sin(L); Z=(N*(1-E)+H)*sin(B); printf("%lf\n%lf\n%lf\n",X,Y,Z); return 0; } 高斯正算程序 #include #include #define a 6378137 #define E1 0.00669437999013 #define E2 0.00673949674227 #define p 1 #define PI

19、 3.14159265358979 main() { double B,L,m0,m2,m4,m6,m8,X,a0,a2,a4,a6,a8,x,y,N,t,l; printf("enter the B,L:"); B=PI/6.0; L=PI*2.0/3.0; l=2.0*PI/180.0; m0=a*(1-E1); m2=3/2*E1*m0; m4=5/4*E1*m2; m6=7/6*E1*m4; m8=9/8*E1*m6; a0=m0+1/2*m2+3/8*m4+5/16*m6+35/128*m8; a2=1/2*m2+1/2*m4+15/32*m6+7/16*

20、m8; a4=1/8*m4+3/16*m6+7/32*m8; a6=1/32*m6+1/16*m8; a8=1/128*m8; X=a0*B-1/2*a2*sin(2*B)+1/4*a4*sin(4*B)-1/6*a6*sin(6*B)+1/8*a8*sin(8*B); N=a/(sqrt(1-E1*sin(B)*sin(B))); t=tan(B); x=X+1/2*(N/(p*p))*sin(B)*cos(B)*l*l+1/24*N/(p*p*p*p)*sin(B)*cos(B)*cos(B)*cos(B)*(5-t*t+9*E2*cos(B)*cos(B))*l*l*l*l; y=N/p*cos(B)*l+1/6*N/(p*p*p)*cos(B)*cos(B)*cos(B)*(1-t*t+E2*cos(B)*cos(B))*l*l*l+1/120*N/(p*p*p*p*p)*cos(B)*cos(B)*cos(B)*cos(B)*cos(B)*(5-18*t*t+t*t*t*t)*l*l*l*l*l; printf("%lf\n%lf\n",x,y);return 0;

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!