拋光機設計
拋光機設計,拋光機設計,拋光機,設計
技術學院 畢業(yè)設計(論 文) 題目 拋光機設計 系 (部) 專業(yè) 班級 姓名 指導老師 系主任 年 月 日 1 目 錄 綜 述 .2 1. 拋光桶設計參數(shù) .5 2. 傳動方案 .6 3. V 帶的設計 .6 3.1 確定設計功率 .6 3.2 選擇帶的型號 .7 3.3 確定帶輪的基準直徑 21d和 .7 3.4 驗算帶的速度 .7 3.5 確定中心距 A 和 V 帶基準長度 dL.7 3.6 確定中心距和小輪包角 .8 3.7 確定 V 帶根數(shù) Z .8 3.8 確定初拉力 0F.9 3.9 計算作用在軸上的壓力 .9 3.10 帶輪結構設計 .9 4. 滾筒的設計 .10 4.1 滾筒結構 .10 4.2 軸承的選擇 .11 4.3 鍵的校核 .11 5. 結論 .12 6. 參考文獻 .12 2 綜 述 機械零件投入機械加工的每張圖紙都有去毛刺的技術要求,去毛刺工序, 工藝人員往往無法編 制工藝文件,通常采用銼刀、布輪、砂布、砂帶等辦法來 去除毛刺。隨著科學技術的進步和生產的發(fā)展,人工去毛刺已不能適應現(xiàn)代市 場竟爭的產品質量和生產方式的要求,光整加工技術逐步取代了傳統(tǒng)的去毛刺 工藝,而且越來越被人們所重視,目前有些先進企業(yè)機械零件的精整與光飾已 被技術人員編入圖紙技術要求的內容,并形成了標準工序。 滾磨光整加工技術的實用工藝過程是:除油處理光整加工及去毛刺分 選清洗烘干防銹處理 除油處理:光整前的零件要進行徹底除油處理,常采用超聲波清洗方法 效果最佳。如果工件上油污進入,磨塊切削力明顯減弱,磨劑作用會降低、光 整效果、效率下降,光整后的零件表面不光亮。 光整加工:光整加工主要是根據(jù)被光整零件件的結構形狀、尺寸大小及 光整要求選擇或確定設備形式、設備規(guī)格、工藝用料、工藝參數(shù)等內容。 光整加工后處理包括三方面:磨塊與工件的分選、磨塊與工件的清洗及 工件的脫水防銹。 磨塊與工件的分選常用方法有:手工篩選、機械篩選、振動篩選、手工電 磁分選和傳送帶式磁力分選,可根據(jù)實際情況選用。磨塊與工件的清洗采用超 聲波清洗方法最佳,再用清請水沖洗干凈,要特別注意工件的脫水烘干和防銹 處理。 大量工藝試驗發(fā)現(xiàn),工件經滾磨光整加工后表面光潔錚亮,其表層的活躍 金屬分子赤裸暴露在空氣中很快氧化變黑,繼而生銹,原因清洗后留在零件表 面上的水膜形成了電化學腐蝕所必須的一層電解質溶液。水的電離度雖小,但 仍可電離成 H + 和OH - ,這種電離過程隨溫度升高而加快。同時水中還溶 解有 CO 2 、SO 2 等,都極易與水結合。 H 2 OH + + OH CO 2 + H 2 OH 2 CO 3 H+ + HCO 3 - 3 鐵和鐵中的雜質浸泡在有 H+、OH - 和HCO 3 - 等多種離子的溶液中 一樣,形成了腐蝕電池,鐵是陽極、雜質是陰極。一般情況下,水膜里含有氧 氣,陽極上的鐵被氧化成 Fe 2+ 離子,在陽極上獲得電子的是氧,然后與水結 合成OH-離子。腐蝕反應為: 2 Fe+ O 2 +2 H 2 O2Fe(OH) 2 由此看來,光整前除油處理和光整后的脫水烘干、防銹處理是非常必要的, 二者缺一不可,其方法也很多。脫水烘干通常采用工業(yè)型甩干機,防銹油用主 要成份是羊毛脂,石油磺酸鋇,石油磺酸鈉及助劑。 磨粒流拋光 原理:在磨粒流加工過程中,夾具配合工件形成加工通道,兩個相對的磨料 缸使磨料在這個通道中來回擠動(如圖 1)。磨料均勻而漸進地對通道表面或 邊角進行研磨,產生拋光、倒角作用。 圖 1 磨粒流加工原理 機床、磨料和夾具是磨粒流加工的三個要素: 擠壓研磨機床:其作用是固定工件和夾具,控制擠出壓力。在一定的壓 力作用下,使磨料研磨被加工表面,得到去毛刺、倒角的效果。機床壓力范圍 從 7224 kg/cm 2 ; 磨料 :是由一種具有粘彈性、柔軟性和切割性的半固態(tài)載體和一定量磨 砂拌和而成。不同載體的粘度、磨砂種類、磨粒大小,可以產生不同的效果。 常用磨料類型有:碳化硅、立方氮化硼、氧化鋁和金鋼砂。砂粒尺寸在 0.0051.5mm。高粘度磨料可用于對零件的壁面和大通道進行均勻研磨;低粘 度磨料用于對零部件邊角倒圓和小通道進行研磨; 夾具:使零件定位,并引導磨料到達被加工部位,堵住不需要加工的部 位。 4 要順利完成零件的磨粒流加工,得到最佳加工效果,影響因素很多,除設 備以外,還包括磨料的選擇、擠壓力的大小、循環(huán)次數(shù)、夾具的合理設計等。 優(yōu)點:擠壓研磨是對金屬材料進行微量去除,對零件內腔交叉部位去毛刺并 倒圓,達到精細加工的目的。磨粒流加工具有精確性、穩(wěn)定性和靈活性。廣泛 用于汽車業(yè)和各種生產制造業(yè)。它最根本的優(yōu)點是:可以通達零件復雜而難以 進入的部位;拋光表面均勻、完整;批量零件的加工效果重復一致。這些加工 特點使零件性能得到改善,壽命延長,同時減免繁雜的手工勞動,大大降低勞 動強度。如汽車進氣管,手工拋光其內表面時,只能先切割開,拋光后再焊接 起來。而用磨粒流加工方法,不需要切割打開就可以完成內表面拋光。除了作 為一種拋光手段,磨粒流工藝還可以對一些表面形狀公差、質量要求極其嚴格 的零件進行微量磨削加工。 應用:磨料流加工適用于加工不同的零件和尺寸。小至 0.2mm 的小孔或 1.5mm 直徑的齒輪,大至 50mm 直徑的花鍵通道,甚至 1.2m 的透平葉輪。加工 大型零件的機床可以裝置回旋臂或輸送軌道。 該工藝已廣泛用于汽車零部件的精加工:進排氣管、進氣門、增壓腔、噴 油器、噴油嘴、氣缸頭、渦輪殼體和葉片、花鍵、齒輪、制動器等。如:粗糙 的氣缸頭鑄造件在專門的二工位磨粒流生產線上,每小時生產量可達到 30 件, 粗糙度從 Ra4m 或 Ra5m 達到 Ra0.4m,可使廢氣排放量減少 7,發(fā)動機功 率增加 6,行駛里程數(shù)增加 5。 近年來研制開發(fā)出的微孔磨粒流機床,在加工噴油嘴方面獨樹一幟。它根 據(jù)擠出壓力、磨料溫度和粘度之間的關系,進行復雜的程序運算。加工過程中, 當噴油嘴的設定流量到達時,加工即自動停止。加工時間在 10 秒左右,流量散 差可控制在1%。與此加工設備配套的還有流量測試儀以及高壓清洗設備。這 些設備可根據(jù)用戶需要,提供單工位或多工位的。也可以是帶機械手連接,包 括加工、測量、清洗的全套系統(tǒng)。 電化學去毛刺 零件內通道相交處粗糙并帶有毛刺一直是令人頭痛的問題。電化學去毛刺 是解決這些問題的好方法。這一技術是用成形工裝,對工件的選定部位進行加 工,接通電流的電解液在工件和工裝之間通過,瞬間溶解毛刺,去毛刺的同時, 5 在內通道相交處產生均勻、精確的倒圓邊角。加工時間一般在 10 秒到 30 秒之 間。大多數(shù)工件采用多個電極頭工裝,可以達到更高的工作效率。去除量取決 于工件(正極)和工裝(負極)之間電流量的大小。電極頭通常設計成與工件 表面相對稱的形狀。對金屬材料制成的零件自動地、有選擇地完成去毛刺作業(yè)。 它可廣泛用于氣動、液壓、工程機械、油嘴油泵、汽車、發(fā)動機等行業(yè)不同金 屬材質的泵體、閥體、連桿、柱塞針閥偶件等零件的去毛刺加工。 圖 2 電化學加工原理圖 電化學去毛刺是一種有特色,效率高的生產技術,適宜加工各種金屬零件, 用以去毛刺,成形機加工,邊角倒圓、精整。鑄造的、鍛造的、機加工,或電 火花加工的零件都可以用電化學的方法拋光。去除量在 0.01mm 到 0.5mm 之間。 一般情況,光潔度可改善 5 到 10 個數(shù)量級。拋光后的產品表面均勻光滑,而且 鏡樣閃亮。 電化學拋光的典型應用包括:有高純凈度要求的零件;人體手術植入件; 瓶模;以及各種各樣的不銹鋼零件。如:電解加工柴油機噴油嘴零件時,在中 孔處加工出一個壁面光滑的定量空腔,同時對交叉孔道、邊角倒圓。 美國的電解自動去毛刺設備,具有一小時能加工成百件產品的能力。在電 化學去毛刺的自動系統(tǒng)上加工汽車用安全氣囊裝置上的殼體,每個殼體上共有 48 個小孔,8 個殼體同時加工,10 秒鐘以內完成所有孔的去毛刺加工。 拋光是制造型腔模具的一道重要工序。它的成本占模具成本的 5%30%,急 需使用的模具往往在拋光時間跟不上要求。電化學機械拋光,同時結合 SD1 型 獨有的液體拋光技術,應用于各種復雜形狀的金屬模具的零件,收到了極佳效 果。 1. 拋光桶設計參數(shù) 拋光桶設計參數(shù)設定如下:動力機為 Y 系列三相異步電動機,功率 6 P=7.5KW,轉速 拋光桶轉速 每天工作 16h。min,/140rnmin,/6302rn 查表可得 Y 系列三相異步電動機的型號及相關數(shù)據(jù)選擇可選擇 Y100L1-4。 可查得軸徑為 28mm,長為 50mm. 2. 傳動方案 V 帶傳動,傳動圖如下圖所示 圖 3 傳動原理:如圖 3 所示,異步電動機通電后轉動,帶動帶輪 1 做回轉運動, 通過 V 帶,帶動帶輪 2 轉動,在軸承之間支撐著滾筒,滾筒通過鍵連接到帶輪 2 上面,隨著帶輪 2 轉動而轉動,當要拋光工件時,先將小零件倒入滾筒,然 后加入木屑等磨料或添加劑,借助滾筒內磨料與零件間的摩擦作用,磨掉零件 表面的氧化皮,產生拋光、倒角作用。 3. V 帶的設計 3.1 確定設計功率 dP 設計功率是根據(jù)需要傳遞的名義功率、載荷性質、原動機類型和每天連續(xù) 7 工作的時間長短等因素共同確定的,表達式如下: madPK 式中 需要傳遞的名義功率mP 工作情況系數(shù),查機械設計表 11.5,得工作情況系數(shù) 選AK AK 取 =1.2; 所以 KWPmad 95.721 3.2 選擇帶的型號 查機械設計圖 11.15,選取 A 型帶。 3.3 確定帶輪的基準直徑 21d和 查機械設計表 11.6,V 帶帶輪最小基準直徑 知 A 型帶 =75mm,又mindmind 由教材表 7.3 選取 小帶輪基準直徑:; md125 大帶輪基準直徑: n28063/1425)0.(212 )( ,這里 %1設 大帶輪轉速 min/4.63280/145)0.1()(22 rdn 3.4 驗算帶的速度 smndv /42.910654.3106 式中 ;電 動 機 轉 速 小帶輪基準直徑;1d 即 v=9.42m/s =25m/s,符合要求。maxv 3.5 確定中心距 a 和 V 帶基準長度 dL 8 根據(jù): 初步確定中心距)(27.021021dad)( 0.7(125+280 )=283.5 2(125+280)=8100 選取中心距 =650mm0 初算帶的基準長度 :dL mLaadL d20,650/.76502.14.3/)2(2 211 查 表 得 3.6 計算中心距和小輪包角 中心距: mddLdLa 4.67)(8)2/(412/)( 2111 小帶輪包角: 1203.604.675810618012ad 3.7 確定 V 帶根數(shù) Z 根據(jù) 確定帶的根數(shù)。0()dLPzK 式中 包角修正系數(shù),考慮包角 對傳動能力的影響 K 180 帶長修正系數(shù),考慮帶長不為特定帶長時對使用壽命的影響L V 帶基本額定功率0P 由機械設計查取單根 V 帶所能傳遞的功率為 =1.93kW;0P 由式 計算功率增量 ;01()biKn0 其中 彎曲影響系數(shù);b 傳動比系數(shù);i 1n電 機 軸 轉 速 9 查教材表 7.4(附表 5)得 = ;bK30.7251 查教材表 7.5 得 ;1.3i 故得 WP7.0 查教材表 7.8(附表 4)得 =0.969;K 查教材表 7.2 得 =1.03;L 所以, 0()dLPzK 所以,選取 V 帶根數(shù) z=5 3.8 確定初拉力 0F202.5()dPmvvzK 式中 d設 計 功 率 v帶 的 速 度 z帶的根數(shù) 包角修正系數(shù)K m普通 V 帶每米長度質量 查教材表 7.1 得 m=0.1kg/m; 所以 NF 1.604.91096.524.9502)( 3.9 計算作用在軸上的壓力 102cossin2QzzF 式中 初拉力0F z帶的根數(shù) 10 小輪包角;1 所以, NFQ 6.158923.6sin.052 3.10 帶輪結構設計 1. 帶輪材料選擇 本設計中轉速要求不高,材料選用 HT200; 2. 帶輪結構形式 本方案中帶輪為中小尺寸,選用腹板輪。 3. 帶輪結構尺寸 查教材表 7.9 得 , ,e=15 0.3, , ,12chm.75e210f.db034。 B=(z-1)e+2f (3-1)x15+20=50mm; C=10mm; ; ,取 =55mm;0d(1.82).456kdmk 4 滾筒的設計 4.1 滾筒結構 11 滾筒端面為正六面形,兩端用螺絲跟軸固定在一起,用于支撐和傳動扭距, 因此選擇滾筒和軸的材料,確定許用應力,選 45 鋼,正火處理。 根據(jù)許用切應力強度極限估計軸的最小直徑,由帶輪外徑 100mm,估算滾 筒兩端軸直徑 25mm。 4.2 軸承的選擇 由工作需要的要求得:軸承的使用時間為 。52081hL 第一對軸承的當量動載荷 P; 。()prafXFY 查手冊取 1.2pf 假設取 6204 軸承 計算步驟與內容 計算結果 1.查手冊查出 、 值(GB/T 2761994)rCor 2. 61tan20.3941tan20748.9cs2cosrTF Nd 3 61.t t5.a 4.計算 /498.3/aororFCN 5.查手冊 e 值 6.計算 /./702.1.ar 7.查手冊:X、Y 的值 8. 查載荷系數(shù). 。.pf 9. praPfF 10.計算軸承壽命: 3106716709512684.hCLn 11.結論:符合要求,選用此軸承。 9380rC52or.7rFN64a0.59.263e085.6,1.7082XY pf94.P125360 12 4.3 鍵的校核 在工作軸中,鍵的選擇大小由軸的大小確定,校核公式: 2ppTdlk 齒輪 2 的安裝鍵型為 A 型鍵 L=30, 為 , ,因為轉動件的齒輪是經過淬火bh87 的,所以許用扭轉應力 :04paMP 2643258.pTdlk 鍵符合扭轉應力的要求。 5 結論 本論文寫出了符合課題參數(shù)要求的拋光桶的設計過程。在文中完成了以下 幾方面的內容: 1)完成了拋光桶的總圖設計,確定整機安裝形式; )確定用 V 帶傳動方式,并對 V 帶進行進行了設計; )分析軸承的選用; 4)確定了用于傳動的鍵,并對鍵進行了校核; 5)確定了電動機、帶輪尺寸和形狀;完成拋光機的裝配圖。 6 參考文獻 1 王文斌, 機械設計手冊 ,機械工業(yè)出版社 2 吳宗澤,機械設計手冊,機械工業(yè)出版社,2002 13 附錄 1 拋光桶傳動簡圖 附錄 2 14 裝配總圖 Lapping and polishing process for obtaining super-smooth surfaces of quartz crystal J.L. Yuan * , P. Zhao, J. Ruan, Z.X. Cao, W.H. Zhao, T. Xing Research Center of Science, Zhejiang University of Technology, Hangzhou 310014, PR China Abstract The lapping and polishing processes to obtain the damage-free surfaces and A level surface roughness of quartz crystal is discussed and realized by adopting soft material polishers, fine abrasive powders, and suitable working environments, by taking account of the minimization of mechanical actions in polishing process. The material removal mechanism in the process of ultra-precision polishing is discussed, and the basic formation models of surface roughness are also put forward. A super-smooth surface of quartz crystal with 12 A level roughness have been obtained by adopting the SiO 2 abrasive powders and the K3 pitch polisher in the experiments. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Lapping and polishing; Super-smooth surface; Quartz crystal 1. Introduction Material science and technology make remarkable pro- gress and the application of newly developed materials to various devices have increased rapidly. In particular, when fabricating a high-performance device, it is often necessary to adopt high-level lapping and polishing. Recently, the study of ultra-precision machining, which forms the van- guard of machining methods, has developed rapidly and its contributions to industry have been notable. When elevating such lapping and polishing methods to ultra-precision machining, it is essential to improve conventional polishing techniques steadily or add new working principles, thus ensuring the highest qualities and accuracy on worked surfaces. Ref. 1 shows that a soft polisher will reduce the deterioration of surface roughness, if meeting unfortu- nately with large abrasives or dusts in polishing. It is the most important to get satisfactorily a smooth working face and suitable elastic polisher. To obtain the super-smooth surface, it is also extremely important to select abrasives. The report 2 has shown that the ultra-precision polishing of quartz crystal can be realized by using SiO 2 fine powders. In this report, the processes to obtain the damage-free surfaces and A level surface roughness of quartz crystal is discussed and realized by adopting soft material polishers, fine abrasive powders, and suitable working environments, by taking account of the minimization of mechanical actions in polishing process. 2. Lapping mechanism and polishing mechanism In the process of lapping, the action effect of abrasives and the properties of lap material have the close relation. Abra- sives in the ways of rolling and micro-cutting remove the quartz crystal. The micro-cracks are produced on the quartz crystal surface due to the action of abrasives. It is the main way to remove quartz material in lapping. The crack area will burst apart because of micro-cracks extension and intersection, so quartz crystal is removed. The length dis- tribution of micro-cracks beneath the quartz surface is nearly equal. The higher is the load, the longer are the cracks. The general conclusion is that the propagation depth beneath the quartz surface is one-third of average abrasive size. The properties of polisher material and abrasive powders are the essential conditions to ensure the super-smooth surfaces. A soft polisher will reduce the deterioration of surface roughness 1, if meeting unfortunately with large abrasive or dusts in polishing. To obtain the super-smooth surface, it is extremely important both to select abrasives and get satisfactorily a smooth face and suitable elastic polisher. Hard abrasive will generate grooves, on material surface during lapping and polishing in general. However, this Journal of Materials Processing Technology 138 (2003) 116119 * Corresponding author. Tel.: 86-571-85132902. E-mail address: (J.L. Yuan). 0924-0136/03/$ see front matter # 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0924-0136(03)00058-X mechanism does not apply to the ultra-precision polishing if the hardness of abrasive powder is equivalent to that of worked material. It has shown that the material removal process, containing both the initiation of point defects and the stochastic fracture at an atomic scale due to the bom- bardment of SiO 2 particles on the quartz crystal surface, may be considered as the essential part of the mechanism of ultra- precision polishing 2. 3. Experimental procedures 3.1. Determination of optimum lapping parameters The machining margin of quartz crystal is almost removed in lapping process, so the lapping efficiency makes great effect on the whole machining time. On the other hand, the lapped surface integrity will effect polishing time and quality. Experiment shows that the process parameters affecting surface roughness and lapping efficiency are abra- sive properties and size, concentration of lapping slurry, lapping speed and lapping pressure, etc. To ensure the surfaces machining accuracy of the quartz crystal, initial parallelism of the quartz specimens is adjusted to less than 0.5 mm. Then their roughness is improved on a conditioning ring-type lapping machine with #1000, #2000 and #4000 Al 2 O 3 powders. The lapping parameters (lapping speed and lapping pressure) effecting on the stock removal of quartz crystal are changed, and the relations between stock removal and the parameters are shown in Figs. 1 and 2. Fig. 1 shows that lapping speed is proportional to the stock removal. This is because, the bigger is the speed, the longer are the machining micro-cracks caused by abrasives cutting in unit time; as a result, the stock removal becomes larger. The experiments also show that the higher is the lapping speed, the smaller is the surface roughness. Fig. 2 shows the relation between lapping pressure and stock removal. It shows that stock removal is proportional to lapping pressure. This is because that, with the increase of lapping pressure, the single abrasive grain force exert- ing on the surface of the specimen and crack length beneath the surface of specimen relatively increase; this also causes the increase of the stock removal. But the increasing of lapping pressure is not unconstrained, as when the pressure increases too much, the quartz specimen will be broken. Fig. 3(a)(c) shows correspondingly roughness profiles of quartz crystal lapped by #1000, #2000 and #4000 Al 2 O 3 abrasives, respectively. The results show that the finer are the abrasives, the smaller are the scratches and indentation of single abrasive, and also the smaller is the micro-crack length. As a result, the smaller is the surface roughness, the smaller is the corresponding stock removal. Fig. 4 shows the relations among abrasive size, stock removal and surface roughness. In order to get higher quality and higher stock removal, the reasonable scopes of lapping parameters are as follows: concentration of lapping slurry is 2030 wt.%, lapping speed is 80170 m/min and lapping pressure is 100 150 g/cm 2 . 3.2. Ultra-precision polishing machining After lapping, the specimens are rinsed with distilled water and then wiped clean with absorbent cotton soaked with acetone. Then, put the quartz specimens together with the stainless steel jig on the conditioning ring-type polishing machine. Soft K3 pitch polisher (with 4 mm mesh groove) and SiO 2 powders were applied to polish of quartz crystal to obtain A level surface roughness. First, the quartz specimens are polished with 0.3 mm CeO 2 powders for 210 min to remove the damaged layer left by the lapping machining. Then, the specimens are polished with 500 A SiO 2 fine powders to obtain perfect surface. TheFig. 1. The relation between lapping speed and stock removal. Fig. 2. The relation between lapping pressure and stock removal. J.L. Yuan et al. / Journal of Materials Processing Technology 138 (2003) 116119 117 experimental process is carried in a clean room without dusts. The polishing conditions are as follows: polishing pressure is 18 g/cm 2 and polishing speed is 143.4 m/min. 4. Results and discussion In order to compare the polishing results, several kinds of powders are used in this study under the same polishing conditions. Fig. 5 shows the stock removals of quartz with varied abrasives. Figs. 68 show the roughness profiles relative to the abrasives of Fe 2 O 3 ,CeO 2 and SiO 2 , respec- tively. The stock removals calculated from Fig. 5 are: l.4, 7, and 8.4 A /s corresponding to Fe 2 O 3 , CeO 2 , and SiO 2 powders and the maximum roughness are 15, 25 and 12A corre- sponding to Fe 2 O 3 , CeO 2 , and SiO 2 powders. On the polished surfaces by SiO 2 powders, the maximum roughness is within 12A . This result means that the super-smooth surfaces of quartz crystal are obtained by taking account of the minimization of mechanical actions in polishing process. The material is removed at the atomic scale. Fig. 3. The roughness profiles of lapped quartz crystal. Fig. 4. The lapping relations among abrasives size, stock removal and surfaces roughness. Fig. 5. The polishing relations among abrasives size, stock removal and surfaces roughness. Fig. 6. Roughness profile polished by Fe 2 O 3 (by Talystep). 118 J.L. Yuan et al. / Journal of Materials Processing Technology 138 (2003) 116119 5. Conclusions The optimum scopes of lapping parameters of quartz crystal are determined by experiments. A conventional optical polishing method has been improved to ensure the super-smooth surfaces on quartz crystal. Soft K3 pitch polisher and SiO 2 powders were applied to polishing of quartz crystal to obtain A level surfaces roughness: (1) The mechanical action of abrasives includes rolling and micro-cutting in lapping process of quartz crystal. (2) The rolling actions of the abrasives form the indenta- tion with micro-cracks, the micro-cutting actions of the abrasives form scratches with cracks under the bottom. (3) Lapping speed and lapping pressure are proportional to lapping stock removal of quartz crystal. The finer abrasives will cause smaller surface roughness and lower stock removal. (4) The determined scopes of lapping parameters are as follows: concentration is 2030 wt.%, lapping speed is 80170 m/min and lapping pressure is 100150 g/cm 2 . (5) The properties of the polisher material and abrasive powders are essential conditions to ensure the super- smooth surfaces. (6) Under the given experimental conditions, 12A sur- face roughness of quartz crystal was obtained. (7) The stock removal polished with SiO 2 powders is 1.4 A /s, which confirms that the material removal is at the atomic scale. Acknowledgements The authors are thankful for the financial aid to this project supplied by Zhejiang Provincial Natural Science Foundation of China (501097) and Young Scientist Training Project of Zhejiang Provincial Natural Science Foundation of China (RC RC02066). References 1 T. Kasai, K. Horio, T. Karaki-Doy, Ann. CIRP 39 (1) (1990). 2 J.L. Yuan, Z.F. Tong, SME MR 91-193, 1991. Fig. 7. Roughness profile polished by CeO 2 . Fig. 8. Roughness profile polished by SiO 2 (by Talystep). J.L. Yuan et al. / Journal of Materials Processing Technology 138 (2003) 116119 119
收藏